IMR OpenIR
Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery
Liu, Ruijia1,2; Yang, Lingxu3; Wang, Wenjun3; Zhao, Enyue3; Wang, Baotian4,5; Zhang, Xue2; Liu, Huijun3; Zeng, Chaoliu3
通讯作者Zhao, Enyue(eyzhao@sslab.org.cn) ; Liu, Huijun(hui_jun_liu@163.com) ; Zeng, Chaoliu(clzeng@imr.ac.cn)
2023-06-01
发表期刊MATERIALS TODAY ENERGY
ISSN2468-6069
卷号34页码:10
摘要Structure-stable anodes are essential for achieving long-cycling stability in sodium-ion batteries. However, a large cycled structure/volume change is inevitable in conversion-type or alloying-reaction anodes, which make them intrinsically unsuitable for durable sodium-ion batteries . Here, we synthesized carbon fiber-anchored vanadium nitride nanoparticles (denoted as VN@CF) through a simple molten-salt method without NH3 treatment. The VN@CF anode shows an ultra-stable Na-storage structure with a discharge capacity of 204 mAh/g at 0.1 A/g after 500 cycles. More notably, it shows remarkably longcycling stability over 6600 cycles without capacity attenuation at 1.0 A/g. Multiple ex-situ characterizations, such as X-ray diffraction and X-ray photoelectron spectroscopy, indicate that the sodium storage behavior of VN@CF is a surface redox-related pseudocapacitive process, which is further supported by theoretical calculations. Such surface pseudocapacitive could not only enhance the sodium-storage structure stability but increase the redox reaction kinetics, which should be the origins of VN@CF's superior electrochemical properties. Our work paves a way for designing structure-stable energy storage materials based on the surface redox pseudocapacitance mechanism. (c) 2023 Elsevier Ltd. All rights reserved.
关键词Sodium ion storage Vanadium nitride anode Molten salt synthesis Redox pseudocapacitance Cycle stability
资助者National Natural Science Foundation of China ; Guangdong Basic and Applied Basic Research Foundation, China ; open research fund of Songshan Lake Materials Laboratory
DOI10.1016/j.mtener.2023.101300
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51671204] ; National Natural Science Foundation of China[12105197] ; Guangdong Basic and Applied Basic Research Foundation, China[2019A1515110825] ; open research fund of Songshan Lake Materials Laboratory[2022SLABFK04]
WOS研究方向Chemistry ; Energy & Fuels ; Materials Science
WOS类目Chemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary
WOS记录号WOS:000989628600001
出版者ELSEVIER SCI LTD
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/177898
专题中国科学院金属研究所
通讯作者Zhao, Enyue; Liu, Huijun; Zeng, Chaoliu
作者单位1.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
3.Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
4.Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
5.Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
推荐引用方式
GB/T 7714
Liu, Ruijia,Yang, Lingxu,Wang, Wenjun,et al. Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery[J]. MATERIALS TODAY ENERGY,2023,34:10.
APA Liu, Ruijia.,Yang, Lingxu.,Wang, Wenjun.,Zhao, Enyue.,Wang, Baotian.,...&Zeng, Chaoliu.(2023).Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery.MATERIALS TODAY ENERGY,34,10.
MLA Liu, Ruijia,et al."Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery".MATERIALS TODAY ENERGY 34(2023):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Ruijia]的文章
[Yang, Lingxu]的文章
[Wang, Wenjun]的文章
百度学术
百度学术中相似的文章
[Liu, Ruijia]的文章
[Yang, Lingxu]的文章
[Wang, Wenjun]的文章
必应学术
必应学术中相似的文章
[Liu, Ruijia]的文章
[Yang, Lingxu]的文章
[Wang, Wenjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。