IMR OpenIR
Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning
Teng, Xiaoyuan1,2; Pang, Jianchao2; Liu, Feng1; Zou, Chenglu2; Bai, Xin2; Li, Shouxin2; Zhang, Zhefeng2
通讯作者Pang, Jianchao(jcpang@imr.ac.cn) ; Zhang, Zhefeng(zhfzhang@imr.ac.cn)
2023-05-24
发表期刊ACTA METALLURGICA SINICA-ENGLISH LETTERS
ISSN1006-7191
页码13
摘要Conventional fatigue tests on complex components are difficult to sample, time-consuming and expensive. To avoid such problems, several popular machine learning (ML) algorithms were used and compared to predict fatigue life of gray cast iron (GCI) with the complex microstructures. The feature analysis shows that the fatigue life of GCI is mainly influenced by the external environment such as the stress amplitude, and the internal microstructure parameters such as the percentage of graphite, graphite length, stress concentration factor at the graphite tip, matrix microhardness and Brinell hardness. For simplicity, collected datasets with some of the above features were used to train ML models including back-propagation neural network (BPNN), random forest (RF) and eXtreme gradient boosting (XGBoost). The comparison results suggest that the three models could predict the fatigue lives of GCI, while the implemented RF algorithm is the best performing model. Moreover, the S-N curves fitted by the Basquin relation in the predicted data have a mean relative error of 15% compared to the measured data. The results have demonstrated the advantages of ML, which provides a generic way to predict the fatigue life of GCI for reducing time and cost.
关键词Gray cast iron Microstructure feature Machine learning High-cycle fatigue life
资助者National Natural Science Foundation of China (NSFC)
DOI10.1007/s40195-023-01566-z
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[51871224] ; National Natural Science Foundation of China (NSFC)[52130002]
WOS研究方向Metallurgy & Metallurgical Engineering
WOS类目Metallurgy & Metallurgical Engineering
WOS记录号WOS:000994091200002
出版者CHINESE ACAD SCIENCES, INST METAL RESEARCH
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/177983
专题中国科学院金属研究所
通讯作者Pang, Jianchao; Zhang, Zhefeng
作者单位1.Liaoning Petrochem Univ, Sch Mech Engn, Fushun 113001, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Teng, Xiaoyuan,Pang, Jianchao,Liu, Feng,et al. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning[J]. ACTA METALLURGICA SINICA-ENGLISH LETTERS,2023:13.
APA Teng, Xiaoyuan.,Pang, Jianchao.,Liu, Feng.,Zou, Chenglu.,Bai, Xin.,...&Zhang, Zhefeng.(2023).Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning.ACTA METALLURGICA SINICA-ENGLISH LETTERS,13.
MLA Teng, Xiaoyuan,et al."Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning".ACTA METALLURGICA SINICA-ENGLISH LETTERS (2023):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Teng, Xiaoyuan]的文章
[Pang, Jianchao]的文章
[Liu, Feng]的文章
百度学术
百度学术中相似的文章
[Teng, Xiaoyuan]的文章
[Pang, Jianchao]的文章
[Liu, Feng]的文章
必应学术
必应学术中相似的文章
[Teng, Xiaoyuan]的文章
[Pang, Jianchao]的文章
[Liu, Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。