Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis | |
Hu, Xinrui1; Xiao, Zhengyi1; Wang, Weizhen2; Bu, Lingzheng6; An, Zhengchao1; Liu, Shangheng1; Pao, Chih-Wen3; Zhan, Changhong1; Hu, Zhiwei4; Yang, Zhiqing5; Wang, Yucheng1; Huang, Xiaoqing1 | |
通讯作者 | Bu, Lingzheng(lzbu@xmu.edu.cn) ; Huang, Xiaoqing(hxq006@xmu.edu.cn) |
2023-06-08 | |
发表期刊 | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
![]() |
ISSN | 0002-7863 |
页码 | 9 |
摘要 | Designingplatinum (Pt)-based formic acid oxidation reaction (FAOR)catalysts with high performance and high selectivity of direct dehydrogenationpathway for direct formic acid fuel cell (DFAFC) is desirable yetchallenging. Herein, we report a new class of surface-uneven PtPbBi/PtBicore/shell nanoplates (PtPbBi/PtBi NPs) as the highly active and selectiveFAOR catalysts, even in the complicated membrane electrode assembly(MEA) medium. They can achieve unprecedented specific and mass activitiesof 25.1 mA cm(-2) and 7.4 A mg(Pt) (-1) for FAOR, 156 and 62 times higher than those of commercial Pt/C,respectively, which is the highest for a FAOR catalyst by far. Simultaneously,they show highly weak adsorption of CO and high dehydrogenation pathwayselectivity in the FAOR test. More importantly, the PtPbBi/PtBi NPscan reach the power density of 161.5 mW cm(-2), alongwith a stable discharge performance (45.8% decay of power densityat 0.4 V for 10 h), demonstrating great potential in a single DFAFCdevice. The in situ Fourier transform infrared spectroscopy(FTIR) and X-ray absorption spectroscopy (XAS) results collectivelyreveal a local electron interaction between PtPbBi and PtBi. In addition,the high-tolerance PtBi shell can effectively inhibit the production/adsorptionof CO, resulting in the complete presence of the dehydrogenation pathwayfor FAOR. This work demonstrates an efficient Pt-based FAOR catalystwith 100% direct reaction selectivity, which is of great significancefor driving the commercialization of DFAFC. |
资助者 | National Key R&D Program of China ; Ministry of Science and Technology of China ; National Natural Science Foundation of China ; Xiamen University |
DOI | 10.1021/jacs.3c00262 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2020YFB1505802] ; Ministry of Science and Technology of China[2017YFA0208200] ; National Natural Science Foundation of China[22025108] ; National Natural Science Foundation of China[U21A20327] ; National Natural Science Foundation of China[22121001] ; Xiamen University |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Multidisciplinary |
WOS记录号 | WOS:001004388000001 |
出版者 | AMER CHEMICAL SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/178292 |
专题 | 中国科学院金属研究所 |
通讯作者 | Bu, Lingzheng; Huang, Xiaoqing |
作者单位 | 1.Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 3.Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan 4.Max Planck Inst Chem Phys Solids, Coll Chem, D-01187 Dresden, Germany 5.Ji Hua Lab, Foshan 528200, Peoples R China 6.Xiamen Univ, Coll Energy, Xiamen 361102, Peoples R China |
推荐引用方式 GB/T 7714 | Hu, Xinrui,Xiao, Zhengyi,Wang, Weizhen,et al. Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2023:9. |
APA | Hu, Xinrui.,Xiao, Zhengyi.,Wang, Weizhen.,Bu, Lingzheng.,An, Zhengchao.,...&Huang, Xiaoqing.(2023).Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis.JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,9. |
MLA | Hu, Xinrui,et al."Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis".JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023):9. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论