IMR OpenIR
An explainable machine learning model for superalloys creep life prediction coupling with physical metallurgy models and CALPHAD
Huang, Yuyu1,2; Liu, Jide1,2; Zhu, Chongwei1,2; Wang, Xinguang1; Zhou, Yizhou1; Sun, Xiaofeng1; Li, Jinguo1
通讯作者Liu, Jide(jdliu@imr.ac.cn)
2023-08-01
发表期刊COMPUTATIONAL MATERIALS SCIENCE
ISSN0927-0256
卷号227页码:11
摘要Data-driven research mode plays an increasingly important role in scientific research. In this study, a dimen-sionality reduction strategy coupling with physical metallurgy models and CALPHAD method was proposed to established a machine learning model for Ni-based single crystal creep life prediction. SHAP analysis was applied to explain the internal mechanisms and the final results of the model. The results showed that the model was of good prediction accuracy and its prediction results could be reasonably explained. Thus, the model can be applied to predict the creep lives of engineering-applied superalloys and to search for the relationship between microstructures and creep lives of superalloys, which is expected to be applied to the design of new alloy.
关键词Creep life prediction Explainable machine learning Physical metallurgy models CALPHAD
资助者National Science and Technology Major Project ; National Natural Science Foundation of China ; National Key R amp; D Program of China
DOI10.1016/j.commatsci.2023.112283
收录类别SCI
语种英语
资助项目National Science and Technology Major Project[J2019 -VI -0023-0139] ; National Science and Technology Major Project[J2019 -VII -0004- 0144] ; National Natural Science Foundation of China[51871221] ; National Key R amp; D Program of China[2020YFA0714900]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:001011948100001
出版者ELSEVIER
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/178367
专题中国科学院金属研究所
通讯作者Liu, Jide
作者单位1.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Huang, Yuyu,Liu, Jide,Zhu, Chongwei,et al. An explainable machine learning model for superalloys creep life prediction coupling with physical metallurgy models and CALPHAD[J]. COMPUTATIONAL MATERIALS SCIENCE,2023,227:11.
APA Huang, Yuyu.,Liu, Jide.,Zhu, Chongwei.,Wang, Xinguang.,Zhou, Yizhou.,...&Li, Jinguo.(2023).An explainable machine learning model for superalloys creep life prediction coupling with physical metallurgy models and CALPHAD.COMPUTATIONAL MATERIALS SCIENCE,227,11.
MLA Huang, Yuyu,et al."An explainable machine learning model for superalloys creep life prediction coupling with physical metallurgy models and CALPHAD".COMPUTATIONAL MATERIALS SCIENCE 227(2023):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Yuyu]的文章
[Liu, Jide]的文章
[Zhu, Chongwei]的文章
百度学术
百度学术中相似的文章
[Huang, Yuyu]的文章
[Liu, Jide]的文章
[Zhu, Chongwei]的文章
必应学术
必应学术中相似的文章
[Huang, Yuyu]的文章
[Liu, Jide]的文章
[Zhu, Chongwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。