IMR OpenIR
Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network
Wang, Hai1; Koenigsmann, Konrad4; Zhang, Shuyuan1; Li, Yi1,2; Liu, Huan1,2; Liu, Hui1; Ren, Ling1,5; Qiu, Dong3; Yang, Ke1
通讯作者Ren, Ling(lren@imr.ac.cn) ; Qiu, Dong(dong.qiu2@rmit.edu.au)
2023-09-01
发表期刊INTERNATIONAL JOURNAL OF PLASTICITY
ISSN0749-6419
卷号168页码:11
摘要Superplasticity is a highly sought-after property of components manufactured with complex ge-ometries in metal forming processes. However, superplasticity usually occurs at high tempera-tures and/or low strain rates, which entails high energy consumption, long processing time, and severe surface oxidation. Herein, we have developed a multiphase nanocrystalline network (MPNN) in a Ti6Al4V5Cu model alloy, where the grain boundary & beta; phases promote the sliding and rotation of ultrafine & alpha; grains, while the nanosized Ti2Cu particles pin down the & alpha;/& beta; bound-aries to maintain the thermostability of the nanostructure. Results show that the onset temper-ature for superplasticity of the model alloy is 250 degrees C lower than that of the Ti6Al4V alloy at the strain rate of 10-4 s-1. Remarkably, superplasticity was also observed at an extremely high strain rate of 1 s -1 at 750 degrees C, which is 2-4 orders of magnitude larger than conventional superplastic metals. The present work is of great significance in developing more economical and efficient superplastic deformation processes.
关键词Superplasticity In-situ observation Thermostability Nanocrystalline
资助者National Key Research and Development Program of China ; Bintech-IMR R amp; D Program ; IMR Innovation Fund ; Natural Science Foundation of Liaoning
DOI10.1016/j.ijplas.2023.103694
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2022YFC2406003] ; National Key Research and Development Program of China[2022YFC2406001] ; Bintech-IMR R amp; D Program[GYY-JSBU-2022-008] ; IMR Innovation Fund[2023-PY06] ; Natural Science Foundation of Liaoning[2023-MS-022]
WOS研究方向Engineering ; Materials Science ; Mechanics
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary ; Mechanics
WOS记录号WOS:001036844500001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/178760
专题中国科学院金属研究所
通讯作者Ren, Ling; Qiu, Dong
作者单位1.Chinese Acad Sci, Inst Met Res, Shi changxu Innovat Ctr Adv Mat, Shenyang, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang, Peoples R China
3.RMIT Univ, Ctr Addit Mfg, Sch Engn, Melbourne, Vic, Australia
4.Univ Chicago, Chicago, IL 60637 USA
5.Binzhou Inst Technol, Shandong Key Lab Adv Aluminium Mat & Technol, Weiqiao UCAS Sci & Technol Pk, Binzhou 256606, Peoples R China
推荐引用方式
GB/T 7714
Wang, Hai,Koenigsmann, Konrad,Zhang, Shuyuan,et al. Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network[J]. INTERNATIONAL JOURNAL OF PLASTICITY,2023,168:11.
APA Wang, Hai.,Koenigsmann, Konrad.,Zhang, Shuyuan.,Li, Yi.,Liu, Huan.,...&Yang, Ke.(2023).Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network.INTERNATIONAL JOURNAL OF PLASTICITY,168,11.
MLA Wang, Hai,et al."Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network".INTERNATIONAL JOURNAL OF PLASTICITY 168(2023):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Hai]的文章
[Koenigsmann, Konrad]的文章
[Zhang, Shuyuan]的文章
百度学术
百度学术中相似的文章
[Wang, Hai]的文章
[Koenigsmann, Konrad]的文章
[Zhang, Shuyuan]的文章
必应学术
必应学术中相似的文章
[Wang, Hai]的文章
[Koenigsmann, Konrad]的文章
[Zhang, Shuyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。