Micromechanical damage analysis of Al-Al2O3 composites via cold-spray additive manufacturing | |
Sayahlatifi, Saman1; Zaiemyekeh, Zahra1; Shao, Chenwei1,2; McDonald, Andre1; Hogan, James D.1 | |
通讯作者 | Sayahlatifi, Saman(sayahlat@ualberta.ca) |
2023-12-01 | |
发表期刊 | INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
![]() |
ISSN | 0020-7403 |
卷号 | 259页码:19 |
摘要 | 3D micro-scale finite element (FE) models were developed to analyze the stress-state-dependent initiation and growth of failure of cold-sprayed additively manufactured (CSAM) Al-Al2O3 composites. Informed by experimental particle size distributions and porosity measurements, representative volume elements (RVEs) were generated by Digimat. Stress-state-dependent constitutive models for the Al matrix and Al2O3 ceramic particles were implemented by VUMAT subroutines in ABAQUS/Explicit FE solver. For the first time in the literature on metal-ceramic composites, the microscale failure mechanisms involving matrix ductile failure, particle cracking, and matrix/particle debonding were all quantified based on the crack volume fraction, the fraction of cracked particles, and the fraction of fully debonded interfacial nodes, respectively. The FE model was quantitatively and qualitatively validated by the experimental data for Al-46 wt% Al2O3 under quasi-static uniaxial compression. The validated model was used to investigate the effect of the particle content and size on the material behavior subjected to different stress states. The results revealed that the failure mechanisms are activated in a specified order across different stress states: I. matrix/particle debonding, II. particle cracking, and III. matrix ductile failure. The material ductility observed under compression/shear vanishes under tension due to the earlier activation of debonding and the faster growth (& SIM; 10 times) of the particle cracking mechanism. Additionally, it was shown that the particle size minimally affects the material strength and flow stress under shear which is likely related to the low load transfer effect through the interfaces. The novelty of this work stems from the provision of a better understanding of the stress-state-dependent evolution of failure mechanisms through a systematic quantification framework whose outcomes have implications for the design of better-performing Al-Al2O3 composites via control of the evolution of failure mechanisms and developing micromechanism-based constitutive models for CSAM metal-ceramic materials. |
关键词 | Cold spray Failure mechanisms Finite element modeling Metal matrix composites |
资助者 | Alberta Innovates Graduate Student Scholarship, Imperial Oil (Esso) ; Natural Science and Engineering Research Council Canada (NSERC) ; Alberta Graduate Excellence Scholarship (AGES) ; RR Gilpin Memorial Scholarship ; Canada Foundation for Innovation, Canada ; Province of Alberta Ministry of Technology and Innovation |
DOI | 10.1016/j.ijmecsci.2023.108573 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Alberta Innovates Graduate Student Scholarship, Imperial Oil (Esso) ; Natural Science and Engineering Research Council Canada (NSERC) ; Alberta Graduate Excellence Scholarship (AGES) ; RR Gilpin Memorial Scholarship ; Canada Foundation for Innovation, Canada ; Province of Alberta Ministry of Technology and Innovation |
WOS研究方向 | Engineering ; Mechanics |
WOS类目 | Engineering, Mechanical ; Mechanics |
WOS记录号 | WOS:001049198100001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/178985 |
专题 | 中国科学院金属研究所 |
通讯作者 | Sayahlatifi, Saman |
作者单位 | 1.Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2R3, Canada 2.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Sayahlatifi, Saman,Zaiemyekeh, Zahra,Shao, Chenwei,et al. Micromechanical damage analysis of Al-Al2O3 composites via cold-spray additive manufacturing[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,2023,259:19. |
APA | Sayahlatifi, Saman,Zaiemyekeh, Zahra,Shao, Chenwei,McDonald, Andre,&Hogan, James D..(2023).Micromechanical damage analysis of Al-Al2O3 composites via cold-spray additive manufacturing.INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,259,19. |
MLA | Sayahlatifi, Saman,et al."Micromechanical damage analysis of Al-Al2O3 composites via cold-spray additive manufacturing".INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES 259(2023):19. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论