IMR OpenIR
Hardness and fracture toughness models by symbolic regression
Zhao, Jinbin1,2; Liu, Peitao1; Wang, Jiantao1,3; Li, Jiangxu1; Niu, Haiyang4; Sun, Yan1; Li, Junlin2; Chen, Xing-Qiu1
通讯作者Liu, Peitao(ptliu@imr.ac.cn)
2023-07-24
发表期刊EUROPEAN PHYSICAL JOURNAL PLUS
ISSN2190-5444
卷号138期号:7页码:19
摘要Superhard materials with good fracture toughness have found wide industrial applications, which necessitates the development of accurate hardness and fracture toughness models for efficient materials design. Although several macroscopic models have been proposed, they are mostly semiempirical based on prior knowledge or assumptions, and obtained by fitting limited experimental data. Here, through an unbiased and explanatory symbolic regression technique, we built a macroscopic hardness model and fracture toughness model, which only require shear and bulk moduli as inputs. The developed hardness model was trained on an extended dataset including more non-cubic systems. The obtained models turned out to be simple, accurate, and transferable. Moreover, we assessed the performance of three popular deep learning models for predicting bulk and shear moduli, and found that the crystal graph convolutional neural network and crystal explainable property predictor perform almost equally well, both better than the atomistic line graph neural network. By combining the machine-learned bulk and shear moduli with the hardness and fracture toughness prediction models, potential superhard materials with good fracture toughness can be efficiently screened out through high-throughput calculations.
资助者National Key R amp;D Program of China ; National Natural Science Foundation of China ; National Science Fund for Distinguished Young Scholars ; Chinese Academy of Sciences ; high performance computational cluster at the Shenyang National University Science and Technology Park
DOI10.1140/epjp/s13360-023-04273-x
收录类别SCI
语种英语
资助项目National Key R amp;D Program of China[2021YFB3501503] ; National Natural Science Foundation of China[52201030] ; National Natural Science Foundation of China[52188101] ; National Science Fund for Distinguished Young Scholars[51725103] ; Chinese Academy of Sciences[ZDRW-CN-2021-2-5] ; high performance computational cluster at the Shenyang National University Science and Technology Park
WOS研究方向Physics
WOS类目Physics, Multidisciplinary
WOS记录号WOS:001039389600004
出版者SPRINGER HEIDELBERG
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/179009
专题中国科学院金属研究所
通讯作者Liu, Peitao
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
2.Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
3.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
4.Northwestern Polytech Univ, Int Ctr Mat Discovery, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Jinbin,Liu, Peitao,Wang, Jiantao,et al. Hardness and fracture toughness models by symbolic regression[J]. EUROPEAN PHYSICAL JOURNAL PLUS,2023,138(7):19.
APA Zhao, Jinbin.,Liu, Peitao.,Wang, Jiantao.,Li, Jiangxu.,Niu, Haiyang.,...&Chen, Xing-Qiu.(2023).Hardness and fracture toughness models by symbolic regression.EUROPEAN PHYSICAL JOURNAL PLUS,138(7),19.
MLA Zhao, Jinbin,et al."Hardness and fracture toughness models by symbolic regression".EUROPEAN PHYSICAL JOURNAL PLUS 138.7(2023):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Jinbin]的文章
[Liu, Peitao]的文章
[Wang, Jiantao]的文章
百度学术
百度学术中相似的文章
[Zhao, Jinbin]的文章
[Liu, Peitao]的文章
[Wang, Jiantao]的文章
必应学术
必应学术中相似的文章
[Zhao, Jinbin]的文章
[Liu, Peitao]的文章
[Wang, Jiantao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。