2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning | |
Tong, Bo1,2; Xu, Jiajun1,2; Du, Jinhong1,2; Liu, Peitao1,2; Du, Tianming3; Wang, Qiang1,2; Li, Langjun4; Wei, Yuning1,2; Li, Jiangxu1; Liang, Jinhua1,2; Liu, Chi1,2; Liu, Zhibo1,2; Li, Chen3; Ma, Lai-Peng1,2; Chai, Yang5,6; Ren, Wencai1,2 | |
通讯作者 | Ren, Wencai(wcren@imr.ac.cn) |
2025-02-13 | |
发表期刊 | NATURE COMMUNICATIONS
![]() |
卷号 | 16期号:1页码:11 |
摘要 | Machine learning is the core of artificial intelligence. Using optical signals for training and converting them into electrical signals for inference, combines the strengths of both, and thus can greatly improve machine learning efficiency. Optoelectronic memories are the hardware foundation for this strategy. However, the existing optoelectronic memories cannot modulate a large number of non-volatile resistive states using ultra-short and ultra-dim light pulses, leading to low training accuracy, slow computing speed and high energy consumption. Here, we synthesized a van der Waals layered photoconductive material, (NH4)BiI3, with excellent photoconductivity and strong dielectric screening effect. We further employed it as the photosensitive control gate in a floating-gate transistor, replacing the commonly used metal control gate, to construct an optical floating gate transistor which achieves adjustable synaptic weights under ultra-dim light without gate voltage assistance. Moreover, it shows ultra-low training energy consumption to generate a non-volatile state and the largest resistive state numbers among the known non-volatile optoelectronic memories. These exceptional performances enable the construction of one-transistor-one-memory device arrays to achieve similar to 99% accuracy in Artificial Neural Networks. Moreover, the device arrays can match the performance of GPU in YOLOv8 while greatly reducing energy consumption. |
资助者 | CAS | Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS) ; National Natural Science Foundation of China ; Chinese Academy of Sciences ; Ministry of Science and Technology of China ; LiaoNing Revitalization Talents Program ; Special Projects of the Central Government in Guidance of Local Science and Technology Development ; Guangdong Basic and Applied Basic Research Foundation |
DOI | 10.1038/s41467-025-56819-5 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | CAS | Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS)[52188101] ; CAS | Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS)[52172057] ; CAS | Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS)[52002375] ; CAS | Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS)[52422112] ; National Natural Science Foundation of China[ZDBS-LY-JSC027 [WCR]] ; Chinese Academy of Sciences[2021YFA1200804] ; Ministry of Science and Technology of China[XLYC2201003] ; LiaoNing Revitalization Talents Program[2024010859-JH6/1006] ; Special Projects of the Central Government in Guidance of Local Science and Technology Development[2020B0301030002] ; Guangdong Basic and Applied Basic Research Foundation |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:001421591600024 |
出版者 | NATURE PORTFOLIO |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/179906 |
专题 | 中国科学院金属研究所 |
通讯作者 | Ren, Wencai |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang, Peoples R China 3.Northeastern Univ, Microscop Image & Med Image Anal Grp, Shenyang, Peoples R China 4.China Med Univ, Clin Coll 1, Shenyang, Peoples R China 5.Hong Kong Polytech Univ Kowloon, Dept Appl Phys, Hong Kong, Peoples R China 6.Hong Kong Polytech Univ Kowloon, Joint Res Ctr Microelect, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Tong, Bo,Xu, Jiajun,Du, Jinhong,et al. 2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning[J]. NATURE COMMUNICATIONS,2025,16(1):11. |
APA | Tong, Bo.,Xu, Jiajun.,Du, Jinhong.,Liu, Peitao.,Du, Tianming.,...&Ren, Wencai.(2025).2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning.NATURE COMMUNICATIONS,16(1),11. |
MLA | Tong, Bo,et al."2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning".NATURE COMMUNICATIONS 16.1(2025):11. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论