IMR OpenIR
Size-driven phase evolution in ultrathin relaxor films
Kim, Jieun1,2; Qi, Yubo3,4; Kumar, Abinash5; Tang, Yun-Long1,6,7; Xu, Michael5; Takenaka, Hiroyuki8; Zhu, Menglin5; Tian, Zishen1,12; Ramesh, Ramamoorthy1,9,10,11,12; Lebeau, James M.5; Rappe, Andrew M.3; Martin, Lane W.6,10,11,12,13
通讯作者Martin, Lane W.(lwmartin@rice.edu)
2025-02-11
发表期刊NATURE NANOTECHNOLOGY
ISSN1748-3387
页码12
摘要Relaxor ferroelectrics (relaxors) are a special class of ferroelectrics with polar nanodomains (PNDs), which present characteristics such as slim hysteresis loops and strong dielectric relaxation. Applications such as nanoelectromechanical systems, capacitive-energy storage and pyroelectric-energy harvesters require thin-film relaxors. Hence, understanding relaxor behaviour in the ultrathin limit is of both fundamental and technological importance. Here the evolution of relaxor phases and PNDs with thickness is explored in prototypical thin relaxor films. Epitaxial 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 films of various nanometre thicknesses are grown by pulsed-laser deposition and characterized by ferroelectric and dielectric measurements, temperature-dependent synchrotron X-ray diffuse scattering, scanning transmission electron microscopy and molecular dynamics simulations. As the film thickness approaches the length of the long axis of the PNDs (25-30 nm), electrostatically driven phase instabilities induce their rotation towards the plane of the films, stabilize the relaxor behaviour and give rise to anisotropic phase evolution along the out-of-plane and in-plane directions. The complex anisotropic evolution of relaxor properties ends in a collapse of the relaxor behaviour when the film thickness reaches the smallest dimension of the PNDs (6-10 nm). These findings establish that PNDs define the critical length scale for the evolution of relaxor behaviour at the nanoscale.
资助者United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory (U.S. Army Research Laboratory) ; Army Research Office ; Office of Naval Research ; National Science Foundation EPSCoR ; National Natural Science Foundation of China ; Youth Innovation Promotion Association CAS ; Army Research Laboratory ; Air Force Office of Scientific Research ; DOE Office of Science by Argonne National Laboratory
DOI10.1038/s41565-025-01863-x
收录类别SCI
语种英语
资助项目United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory (U.S. Army Research Laboratory)[W911NF-21-1-0118] ; Army Research Office[N00014-24-1-2500] ; Office of Naval Research[RII-Track-1] ; Office of Naval Research[OIA-2148653] ; National Science Foundation EPSCoR[51922100] ; National Natural Science Foundation of China[Y202048] ; Youth Innovation Promotion Association CAS[W911NF-24-2-0100] ; Army Research Laboratory[FA9550-24-1-0266] ; Air Force Office of Scientific Research[DE-AC02-06CH11357] ; DOE Office of Science by Argonne National Laboratory
WOS研究方向Science & Technology - Other Topics ; Materials Science
WOS类目Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:001417795400001
出版者NATURE PORTFOLIO
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/179976
专题中国科学院金属研究所
通讯作者Martin, Lane W.
作者单位1.Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA USA
2.Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon, South Korea
3.Univ Penn, Dept Chem, Philadelphia, PA USA
4.Univ Alabama Birmingham, Dept Phys, Birmingham, AL USA
5.MIT, Dept Mat Sci & Engn, Cambridge, MA USA
6.Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
7.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China
8.Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA USA
9.Univ Calif Berkeley, Phys Dept, Berkeley, CA USA
10.Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
11.Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
12.Rice Univ, Rice Adv Mat Inst, Houston, TX 77005 USA
13.Rice Univ, Dept Chem, Houston, TX 77005 USA
推荐引用方式
GB/T 7714
Kim, Jieun,Qi, Yubo,Kumar, Abinash,et al. Size-driven phase evolution in ultrathin relaxor films[J]. NATURE NANOTECHNOLOGY,2025:12.
APA Kim, Jieun.,Qi, Yubo.,Kumar, Abinash.,Tang, Yun-Long.,Xu, Michael.,...&Martin, Lane W..(2025).Size-driven phase evolution in ultrathin relaxor films.NATURE NANOTECHNOLOGY,12.
MLA Kim, Jieun,et al."Size-driven phase evolution in ultrathin relaxor films".NATURE NANOTECHNOLOGY (2025):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kim, Jieun]的文章
[Qi, Yubo]的文章
[Kumar, Abinash]的文章
百度学术
百度学术中相似的文章
[Kim, Jieun]的文章
[Qi, Yubo]的文章
[Kumar, Abinash]的文章
必应学术
必应学术中相似的文章
[Kim, Jieun]的文章
[Qi, Yubo]的文章
[Kumar, Abinash]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。