IMR OpenIR
Sparse wavefield reconstruction based on Physics-Informed neural networks
Xu, Bin1; Zou, Yun1; Sha, Gaofeng2; Yang, Liang3; Cai, Guixi3; Li, Yang1
通讯作者Li, Yang(yangli@zzu.edu.cn)
2025-05-01
发表期刊ULTRASONICS
ISSN0041-624X
卷号149页码:12
摘要In recent years, the widespread application of laser ultrasonic (LU) devices for obtaining internal material information has been observed. However, this approach demands a significant amount of time to acquire complete wavefield data. Hence, there is a necessity to reduce the acquisition time. In this work, we propose a method based on physics-informed neural networks to decrease the required sampling measurements. We utilize sparse sampling of full experimental data as input data to reconstruct complete wavefield data. Specifically, we employ physics-informed neural networks to learn the propagation characteristics from the sparsely sampled data and partition the complete grid to reconstruct the full wavefield. We achieved 95% reconstruction accuracy using four hundredth of the total measurements. The proposed method can be utilized not only for sparse wavefield reconstruction in LU testing but also for other wavefield reconstructions, such as those required in online monitoring systems.
关键词Physics-Informed Neural Networks Wavefield Reconstruction Laser Ultrasonic Non-destructive Testing
资助者National Natural Science Founda-tion of China ; Henan Provincial Key Scientific Research Project of Higher Education Institutions
DOI10.1016/j.ultras.2025.107582
收录类别SCI
语种英语
资助项目National Natural Science Founda-tion of China[51705470] ; Henan Provincial Key Scientific Research Project of Higher Education Institutions[222102220025]
WOS研究方向Acoustics ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Acoustics ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001409822300001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/180659
专题中国科学院金属研究所
通讯作者Li, Yang
作者单位1.Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou 450001, Peoples R China
2.Clover Pk Tech Coll, Sch Adv Mfg, Lakewood, WA 98499 USA
3.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Xu, Bin,Zou, Yun,Sha, Gaofeng,et al. Sparse wavefield reconstruction based on Physics-Informed neural networks[J]. ULTRASONICS,2025,149:12.
APA Xu, Bin,Zou, Yun,Sha, Gaofeng,Yang, Liang,Cai, Guixi,&Li, Yang.(2025).Sparse wavefield reconstruction based on Physics-Informed neural networks.ULTRASONICS,149,12.
MLA Xu, Bin,et al."Sparse wavefield reconstruction based on Physics-Informed neural networks".ULTRASONICS 149(2025):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Bin]的文章
[Zou, Yun]的文章
[Sha, Gaofeng]的文章
百度学术
百度学术中相似的文章
[Xu, Bin]的文章
[Zou, Yun]的文章
[Sha, Gaofeng]的文章
必应学术
必应学术中相似的文章
[Xu, Bin]的文章
[Zou, Yun]的文章
[Sha, Gaofeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。