Achieving excellent elevated-temperature mechanical properties in dual-phase high-entropy alloys via nanoscale co-precipitation and heterostructure engineering | |
Niu, M. C.1,2; Qiu, S.1,2; Yu, Q.1,2; Li, W.3; Zhang, S. Z.3; Guo, J. M.1,2; Luan, J. H.4; Wang, W.3; Yang, T.5; Wang, X. L.6,7; Jiao, Z. B.1,2 | |
通讯作者 | Jiao, Z. B.(zb.jiao@polyu.edu.hk) |
2025 | |
发表期刊 | ACTA MATERIALIA
![]() |
ISSN | 1359-6454 |
卷号 | 284页码:18 |
摘要 | Eutectic high-entropy alloys (EHEAs) have favorable mechanical properties at room temperature but limited strength at elevated temperatures. Here we report a novel approach to remarkably enhance both room- and elevated-temperature mechanical properties of EHEAs via nanoscale co-precipitation and heterostructure engineering. We found that the addition of Nb to an Al-Co-Cr-Fe-Ni EHEA not only triggers the precipitation of L12 nanoprecipitates in the FCC phase but also induces the co-precipitation of alpha' and Laves nanoprecipitates in the B2 phase, resulting in the formation of a hierarchical heterostructure. The precipitation strengthening from the L12, alpha', and Laves nanoprecipitates and the hetero-deformation induced strengthening elevate the yield strength to 1076 MPa at room temperature and 905 MPa at 700 degrees C while maintaining a high ductility of 10%-50% in this temperature range. First-principles calculations were used to evaluate the intrinsic energetics of the multicomponent FCC and B2 phases, and the results reveal that both phases can accommodate plastic deformation via a dislocation slip mechanism. The dislocation interactions in the two phases and the hetero-deformation induced strengthening contribute to the large strain hardening of the alloy at room temperature. At 700 degrees C, the increased atomic mobility facilitates the movement of dislocations in the deformable B2 and FCC phases, and the deformation also induces grain boundary sliding and dynamic recrystallization, which together substantially enhance the alloy ductility at elevated temperatures. The strategy of nanoscale co-precipitation and heterostructure engineering can be applied to other materials for achieving excellent mechanical properties. |
关键词 | Eutectic high-entropy alloy Microstructure formation mechanism Precipitation High-temperature mechanical properties Strengthening mechanism |
资助者 | National Natural Science Foundation of China ; Research Grants Council of Hong Kong ; Shenzhen Science and Technology Program ; RIAM Fund ; PolyU Fund ; CityU |
DOI | 10.1016/j.actamat.2024.120634 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[52171162] ; National Natural Science Foundation of China[52271122] ; Research Grants Council of Hong Kong[15227121] ; Research Grants Council of Hong Kong[15202824] ; Research Grants Council of Hong Kong[C1017-21GF] ; Research Grants Council of Hong Kong[C1020-21GF] ; Shenzhen Science and Technology Program[JCYJ20210324142203009] ; RIAM Fund[P0046108] ; PolyU Fund[P0044243] ; CityU[9600011] ; CityU[9360161] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:001388491200001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/181044 |
专题 | 中国科学院金属研究所 |
通讯作者 | Jiao, Z. B. |
作者单位 | 1.Hong Kong Polytech Univ, Res Inst Adv Mfg, Dept Mech Engn, Hong Kong, Peoples R China 2.Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China 3.Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China 4.City Univ Hong Kong, Dept Mech Engn, Interuniv 3D Atom Probe Tomog Unit, Hong Kong, Peoples R China 5.City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong, Peoples R China 6.City Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China 7.City Univ Hong Kong, Ctr Neutron Scattering, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Niu, M. C.,Qiu, S.,Yu, Q.,et al. Achieving excellent elevated-temperature mechanical properties in dual-phase high-entropy alloys via nanoscale co-precipitation and heterostructure engineering[J]. ACTA MATERIALIA,2025,284:18. |
APA | Niu, M. C..,Qiu, S..,Yu, Q..,Li, W..,Zhang, S. Z..,...&Jiao, Z. B..(2025).Achieving excellent elevated-temperature mechanical properties in dual-phase high-entropy alloys via nanoscale co-precipitation and heterostructure engineering.ACTA MATERIALIA,284,18. |
MLA | Niu, M. C.,et al."Achieving excellent elevated-temperature mechanical properties in dual-phase high-entropy alloys via nanoscale co-precipitation and heterostructure engineering".ACTA MATERIALIA 284(2025):18. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论