IMR OpenIR
Leveraging physics-informed neural networks for wavefield analysis in laser ultrasonic testing
Li, Yang1; Xu, Bin1; Zou, Yun1; Sha, Gaofeng2; Cai, Guixi3
通讯作者Li, Yang(yangli@zzu.edu.cn)
2024-12-23
发表期刊NONDESTRUCTIVE TESTING AND EVALUATION
ISSN1058-9759
页码23
摘要Laser Ultrasonic (LU) technology has emerged as a pivotal non-destructive testing method, offering a unique capability to visualise ultrasonic wavefields and identify defects without causing structural damage. However, challenges arise in certain testing scenarios where direct laser irradiation of the sample surface is hindered, resulting in incomplete LU wavefield datasets. This limitation poses a significant obstacle in accurately assessing material integrity and defect detection. This paper explores the application of Physics-Informed Neural Networks (PINNs) for LU wavefield reconstruction and prediction. PINNs are employed to reconstruct wavefields from incomplete data and predict wavefield behaviour at different time instances. Results demonstrate PINNs' effectiveness in accurately reconstructing wavefields, with correlation coefficients exceeding 0.94 between reconstructed and actual wavefields. Additionally, PINNs show promise in predicting LU wavefield data, albeit with slightly reduced accuracy beyond the training range. Moreover, PINNs effectively reduce noise in wavefield data, enhancing clarity and reliability. This study lays groundwork for further exploration of PINNs in LU defect detection.
关键词Physics-informed neural networks wavefield reconstruction wavefield prediction laser ultrasonic non-destructive testing
资助者National Natural Science Foundation of China ; Henan Provincial Key Scientific Research Project of Higher Education Institutions
DOI10.1080/10589759.2024.2443768
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51705470] ; Henan Provincial Key Scientific Research Project of Higher Education Institutions[222102220025]
WOS研究方向Materials Science
WOS类目Materials Science, Characterization & Testing
WOS记录号WOS:001381216500001
出版者TAYLOR & FRANCIS LTD
引用统计
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/181142
专题中国科学院金属研究所
通讯作者Li, Yang
作者单位1.Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou, Peoples R China
2.Clover Pk Tech Coll, Sch Adv Mfg, Lakewood, WA USA
3.Chinese Acad Sci, Inst Met Res, Shenyang, Peoples R China
推荐引用方式
GB/T 7714
Li, Yang,Xu, Bin,Zou, Yun,et al. Leveraging physics-informed neural networks for wavefield analysis in laser ultrasonic testing[J]. NONDESTRUCTIVE TESTING AND EVALUATION,2024:23.
APA Li, Yang,Xu, Bin,Zou, Yun,Sha, Gaofeng,&Cai, Guixi.(2024).Leveraging physics-informed neural networks for wavefield analysis in laser ultrasonic testing.NONDESTRUCTIVE TESTING AND EVALUATION,23.
MLA Li, Yang,et al."Leveraging physics-informed neural networks for wavefield analysis in laser ultrasonic testing".NONDESTRUCTIVE TESTING AND EVALUATION (2024):23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yang]的文章
[Xu, Bin]的文章
[Zou, Yun]的文章
百度学术
百度学术中相似的文章
[Li, Yang]的文章
[Xu, Bin]的文章
[Zou, Yun]的文章
必应学术
必应学术中相似的文章
[Li, Yang]的文章
[Xu, Bin]的文章
[Zou, Yun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。