IMR OpenIR
Accelerating phase-field simulation of multi-component alloy solidification by shallow artificial neural network
Gong, Tongzhao1; Hao, Weiye1,2; Fan, Weiqi1,2; Chen, Yun1; Chen, Xing-Qiu1; Li, Dianzhong1
通讯作者Gong, Tongzhao(tzgong15s@imr.ac.cn) ; Chen, Yun(chenyun@imr.ac.cn)
2025-02-01
发表期刊COMPUTATIONAL MATERIALS SCIENCE
ISSN0927-0256
卷号248页码:9
摘要Low computing efficiency is a significant barrier in the phase-field modeling of multi-component alloys coupled with the CALPHAD (CALculation of PHAse Diagram) method. The fundamental issue is that the quasi-equilibrium thermodynamic data (QETD) required for calculating the chemical driving force must be acquired by repeatedly solving a large number of nonlinear equations. In this work, a novel method is developed to predict the QETD by a shallow neural network in a straightforward manner, so circumventing the repetitive numerical calculation of nonlinear quasi-equilibrium thermodynamic conditions. The numerical evaluation of a Ni-Cr-Al ternary alloy demonstrates that the proposed scheme can decrease the computing consuming to about 1/80 of that required by the conventional phase-field method when the computational domain size reaches the millimeter scale, while accurately reproducing the equiaxed dendritic growth and solute segregation kinetics during polycrystalline solidification. The method presented in this work will provide an effective tool for modeling the microstructure evolution of complex materials involved in practical engineering applications.
关键词Phase-field method Machine learning Solidification Multi-component alloy Calculation of phase diagram
资助者National Science and Technology Major Project ; National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Youth Talent Program of Shenyang National Laboratory for Materials Science ; Special Projects of the Central Government in Guidance of Local Science and Technology Development
DOI10.1016/j.commatsci.2024.113594
收录类别SCI
语种英语
资助项目National Science and Technology Major Project[J2019-VI-0019-0134] ; National Natural Science Foundation of China[52203301] ; China Postdoctoral Science Foundation[2021TQ0335] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDC0160301] ; Youth Talent Program of Shenyang National Laboratory for Materials Science ; Special Projects of the Central Government in Guidance of Local Science and Technology Development[2024010859-JH6/1006]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:001375496900001
出版者ELSEVIER
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/181468
专题中国科学院金属研究所
通讯作者Gong, Tongzhao; Chen, Yun
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Gong, Tongzhao,Hao, Weiye,Fan, Weiqi,et al. Accelerating phase-field simulation of multi-component alloy solidification by shallow artificial neural network[J]. COMPUTATIONAL MATERIALS SCIENCE,2025,248:9.
APA Gong, Tongzhao,Hao, Weiye,Fan, Weiqi,Chen, Yun,Chen, Xing-Qiu,&Li, Dianzhong.(2025).Accelerating phase-field simulation of multi-component alloy solidification by shallow artificial neural network.COMPUTATIONAL MATERIALS SCIENCE,248,9.
MLA Gong, Tongzhao,et al."Accelerating phase-field simulation of multi-component alloy solidification by shallow artificial neural network".COMPUTATIONAL MATERIALS SCIENCE 248(2025):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gong, Tongzhao]的文章
[Hao, Weiye]的文章
[Fan, Weiqi]的文章
百度学术
百度学术中相似的文章
[Gong, Tongzhao]的文章
[Hao, Weiye]的文章
[Fan, Weiqi]的文章
必应学术
必应学术中相似的文章
[Gong, Tongzhao]的文章
[Hao, Weiye]的文章
[Fan, Weiqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。