IMR OpenIR
Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys
Shi, Peijian1,2; Shen, Zhe1; Wang, Hongguang3; Li, Zhi4; Gu, Yejun4,5; Li, Yi1,9; Yan, Jie2; Lin, Zhongze1; Wang, Mingyang1; Yang, Yinpan1; Ling, Chunyan6; Ding, Biao1; Min, Na7; Peng, Jianchao7; Luan, Junhua2; Liu, Tengshi1; Ren, Weili1; Lei, Zuosheng1; Zhou, Yangtao8; Liu, Yi; Liang, Ningning9; Aken, Peter A. van3; Ren, Yang10; Zhong, Yunbo1; Liu, C. T.2; Gao, Huajian11; Zhu, Yuntian2
通讯作者Zhong, Yunbo(yunboz@staff.shu.edu.cn) ; Liu, C. T.(chainliu@cityu.edu.hk) ; Gao, Huajian(huajian.gao@ntu.edu.sg) ; Zhu, Yuntian(y.zhu@cityu.edu.hk)
2023-12-01
发表期刊MATERIALS TODAY
ISSN1369-7021
卷号71页码:22-37
摘要Bioinspired hierarchical design demonstrates a promising microstructural solution to circumvent multiple intricate property trade-offs in artificial materials. However, it remains extremely challenging to tailor structural hierarchies feasibly and synthetically, particularly for bulk materials. Here, a counterintuitive strategy is reported-exploring multiscale microstructural heredities for highly -developed dendritic hierarchies in as-cast bulk alloys. During optimized thermomechanical processing, we carefully control these dendrites to be progressively deformed, elongated, aligned and refined, rather than completely destroying them as in conventional alloy processing paradigms. As such, a hierarchical fibrous lamellar (HFL) structure-resembling those of shell and bamboo-is controllably designed in a technologically-important CuCrZr alloy. This innovative HFL design promotes multiple synergetic micro-mechanisms with sequential multiscale interactions and salient biomimetic attributes, thereby affording exceptional multifunctionality, especially record-high strength-ducti lity-conductivity combination. At more fundamental levels, multiple previously inaccessible defor-mation and reinforcement mechanisms are activated by exploiting the HFL structure-enabled complex internal stress condition. They perform and interact at multi-length-scales from intense diversified dislocation trapping, massive stacking-fault proliferation, 9R-phase-assited nano-twinning, self -buffering shear bands to ever-intensified hetero-deformation-induced hardening. These scenarios even create superior, strain-rate-tolerant dynamic properties far exceeding conventional homogeneous -structured counterparts. Dendrites exist ubiquitously, yet generally undesirable, in metallic materials, whereas our 'bioinspired, heredity-derived' strategy counterintuitively utilizes them, realizing unprecedented high figure-of-merit multifunctionality. dislocation trapping, massive stacking-fault proliferation, 9R-phase-assited nano-twinning, self -buffering shear bands to ever-intensified hetero-deformation-induced hardening. These scenarios even create superior, strain-rate-tolerant dynamic properties far exceeding conventional homogeneous -structured counterparts. Dendrites exist ubiquitously, yet generally undesirable, in metallic materials, whereas our 'bioinspired, heredity-derived' strategy counterintuitively utilizes them, realizing unprecedented high figure-of-merit multifunctionality.
资助者National Key R&D Program of China ; National Natural Science Foundation of China ; Hong Kong Institute for Advanced Study ; National Natural Science Foundation of China ; City University of Hong Kong ; CityU ; European Union ; U.S. Department of Energy, Office of Science, Office of Basic Energy Science
DOI10.1016/j.mattod.2023.11.003
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2018YFB0109404] ; National Key R&D Program of China[2022YFC2904901] ; National Key R&D Program of China[2022YFC2904903] ; National Key R&D Program of China[2022YFC2904905] ; National Key R&D Program of China[51904184] ; National Natural Science Foundation of China[51931003] ; National Natural Science Foundation of China[52274385] ; National Natural Science Foundation of China[823717] ; Hong Kong Institute for Advanced Study[9360157] ; National Natural Science Foundation of China[9042635] ; City University of Hong Kong ; CityU[9360161] ; CityU[9380060] ; CityU[DE-AC02-06CH11357] ; European Union ; U.S. Department of Energy, Office of Science, Office of Basic Energy Science[52204392] ; [2021YFA1200202]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:001138126500001
出版者ELSEVIER SCI LTD
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/183540
专题中国科学院金属研究所
通讯作者Zhong, Yunbo; Liu, C. T.; Gao, Huajian; Zhu, Yuntian
作者单位1.Shanghai Univ, Sch Mat Sci & Engn, State Key Lab Adv Special Steel, Shanghai Key Lab Adv Ferromletallurgy, Shanghai, Peoples R China
2.City Univ Hong Kong, Hong Kong Inst Adv Study, Coll Sci & Engn, Dept Mat Sci & Engn, Hong Kong, Peoples R China
3.Max Planck Inst Solid State Res, Stuttgart, Germany
4.Inst High Performance Comp, Agcy Sci Technol & Res, Singapore, Singapore
5.Johns Hopkins Univ, Whiting Sch Engn, Dept Mech Engn, Baltimore, MD USA
6.City Univ Hong Kong, Dept Adv Design & Syst Engn, Hong Kong, Peoples R China
7.Shanghai Univ, Lab Microstruct, Shanghai, Peoples R China
8.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China
9.Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing, Jiangsu, Peoples R China
10.City Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
11.Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore
推荐引用方式
GB/T 7714
Shi, Peijian,Shen, Zhe,Wang, Hongguang,et al. Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys[J]. MATERIALS TODAY,2023,71:22-37.
APA Shi, Peijian.,Shen, Zhe.,Wang, Hongguang.,Li, Zhi.,Gu, Yejun.,...&Zhu, Yuntian.(2023).Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys.MATERIALS TODAY,71,22-37.
MLA Shi, Peijian,et al."Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys".MATERIALS TODAY 71(2023):22-37.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shi, Peijian]的文章
[Shen, Zhe]的文章
[Wang, Hongguang]的文章
百度学术
百度学术中相似的文章
[Shi, Peijian]的文章
[Shen, Zhe]的文章
[Wang, Hongguang]的文章
必应学术
必应学术中相似的文章
[Shi, Peijian]的文章
[Shen, Zhe]的文章
[Wang, Hongguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。