Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys | |
Shi, Peijian1,2; Shen, Zhe1; Wang, Hongguang3; Li, Zhi4; Gu, Yejun4,5; Li, Yi1,9; Yan, Jie2; Lin, Zhongze1; Wang, Mingyang1; Yang, Yinpan1; Ling, Chunyan6; Ding, Biao1; Min, Na7; Peng, Jianchao7; Luan, Junhua2; Liu, Tengshi1; Ren, Weili1; Lei, Zuosheng1; Zhou, Yangtao8; Liu, Yi; Liang, Ningning9; Aken, Peter A. van3; Ren, Yang10; Zhong, Yunbo1; Liu, C. T.2; Gao, Huajian11; Zhu, Yuntian2 | |
通讯作者 | Zhong, Yunbo(yunboz@staff.shu.edu.cn) ; Liu, C. T.(chainliu@cityu.edu.hk) ; Gao, Huajian(huajian.gao@ntu.edu.sg) ; Zhu, Yuntian(y.zhu@cityu.edu.hk) |
2023-12-01 | |
发表期刊 | MATERIALS TODAY
![]() |
ISSN | 1369-7021 |
卷号 | 71页码:22-37 |
摘要 | Bioinspired hierarchical design demonstrates a promising microstructural solution to circumvent multiple intricate property trade-offs in artificial materials. However, it remains extremely challenging to tailor structural hierarchies feasibly and synthetically, particularly for bulk materials. Here, a counterintuitive strategy is reported-exploring multiscale microstructural heredities for highly -developed dendritic hierarchies in as-cast bulk alloys. During optimized thermomechanical processing, we carefully control these dendrites to be progressively deformed, elongated, aligned and refined, rather than completely destroying them as in conventional alloy processing paradigms. As such, a hierarchical fibrous lamellar (HFL) structure-resembling those of shell and bamboo-is controllably designed in a technologically-important CuCrZr alloy. This innovative HFL design promotes multiple synergetic micro-mechanisms with sequential multiscale interactions and salient biomimetic attributes, thereby affording exceptional multifunctionality, especially record-high strength-ducti lity-conductivity combination. At more fundamental levels, multiple previously inaccessible defor-mation and reinforcement mechanisms are activated by exploiting the HFL structure-enabled complex internal stress condition. They perform and interact at multi-length-scales from intense diversified dislocation trapping, massive stacking-fault proliferation, 9R-phase-assited nano-twinning, self -buffering shear bands to ever-intensified hetero-deformation-induced hardening. These scenarios even create superior, strain-rate-tolerant dynamic properties far exceeding conventional homogeneous -structured counterparts. Dendrites exist ubiquitously, yet generally undesirable, in metallic materials, whereas our 'bioinspired, heredity-derived' strategy counterintuitively utilizes them, realizing unprecedented high figure-of-merit multifunctionality. dislocation trapping, massive stacking-fault proliferation, 9R-phase-assited nano-twinning, self -buffering shear bands to ever-intensified hetero-deformation-induced hardening. These scenarios even create superior, strain-rate-tolerant dynamic properties far exceeding conventional homogeneous -structured counterparts. Dendrites exist ubiquitously, yet generally undesirable, in metallic materials, whereas our 'bioinspired, heredity-derived' strategy counterintuitively utilizes them, realizing unprecedented high figure-of-merit multifunctionality. |
资助者 | National Key R&D Program of China ; National Natural Science Foundation of China ; Hong Kong Institute for Advanced Study ; National Natural Science Foundation of China ; City University of Hong Kong ; CityU ; European Union ; U.S. Department of Energy, Office of Science, Office of Basic Energy Science |
DOI | 10.1016/j.mattod.2023.11.003 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2018YFB0109404] ; National Key R&D Program of China[2022YFC2904901] ; National Key R&D Program of China[2022YFC2904903] ; National Key R&D Program of China[2022YFC2904905] ; National Key R&D Program of China[51904184] ; National Natural Science Foundation of China[51931003] ; National Natural Science Foundation of China[52274385] ; National Natural Science Foundation of China[823717] ; Hong Kong Institute for Advanced Study[9360157] ; National Natural Science Foundation of China[9042635] ; City University of Hong Kong ; CityU[9360161] ; CityU[9380060] ; CityU[DE-AC02-06CH11357] ; European Union ; U.S. Department of Energy, Office of Science, Office of Basic Energy Science[52204392] ; [2021YFA1200202] |
WOS研究方向 | Materials Science |
WOS类目 | Materials Science, Multidisciplinary |
WOS记录号 | WOS:001138126500001 |
出版者 | ELSEVIER SCI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/183540 |
专题 | 中国科学院金属研究所 |
通讯作者 | Zhong, Yunbo; Liu, C. T.; Gao, Huajian; Zhu, Yuntian |
作者单位 | 1.Shanghai Univ, Sch Mat Sci & Engn, State Key Lab Adv Special Steel, Shanghai Key Lab Adv Ferromletallurgy, Shanghai, Peoples R China 2.City Univ Hong Kong, Hong Kong Inst Adv Study, Coll Sci & Engn, Dept Mat Sci & Engn, Hong Kong, Peoples R China 3.Max Planck Inst Solid State Res, Stuttgart, Germany 4.Inst High Performance Comp, Agcy Sci Technol & Res, Singapore, Singapore 5.Johns Hopkins Univ, Whiting Sch Engn, Dept Mech Engn, Baltimore, MD USA 6.City Univ Hong Kong, Dept Adv Design & Syst Engn, Hong Kong, Peoples R China 7.Shanghai Univ, Lab Microstruct, Shanghai, Peoples R China 8.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China 9.Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing, Jiangsu, Peoples R China 10.City Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China 11.Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore |
推荐引用方式 GB/T 7714 | Shi, Peijian,Shen, Zhe,Wang, Hongguang,et al. Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys[J]. MATERIALS TODAY,2023,71:22-37. |
APA | Shi, Peijian.,Shen, Zhe.,Wang, Hongguang.,Li, Zhi.,Gu, Yejun.,...&Zhu, Yuntian.(2023).Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys.MATERIALS TODAY,71,22-37. |
MLA | Shi, Peijian,et al."Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys".MATERIALS TODAY 71(2023):22-37. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论