IMR OpenIR
In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy
Tan Zihao1; Li Yongmei1,2; Wang Xinguang1; Zhao Haochuan; Tan Haibing3; Wang Biao3; Li Jinguo1; Zhou Yizhou1; Sun Xiaofeng1
通讯作者Wang Xinguang(xgwang11b@imr.ac.cn) ; Sun Xiaofeng(xfsun@imr.ac.cn)
2024-02-11
发表期刊ACTA METALLURGICA SINICA
ISSN0412-1961
卷号60期号:2页码:154-166
摘要During the service, the turbine blades of aero-engines are subjected to a complex and ever-changing combination of temperature and stress, resulting in severe cyclic temperature/strain damages and thermal-mechanical fatigue (TMF) failures of the alloy. In this work, in-phase (IP) TMF tests under 600-1000 degrees C were conducted on a newly developed fourth-generation single-crystal superalloy. The alloy.. s fracture characteristics and comprehensive damage mechanisms were examined via SEM, EBSD, and TEM. The results showed that when the strain range increased, the fatigue life of the experimental alloy noticeably decreased, and the hysteresis loop clearly opened. Stress response behaviors shifted from cyclic softening at high temperatures and cyclic hardening at low temperatures into a dominant characteristic of cyclic stabilizing. The fracture surfaces of alloys displayed ductile features after fatigue fracture under various circumstances, and the area fraction of dimples reduced with increasing strain amplitude. When the strain amplitude was low, the alloy was mainly subjected to oxidation damage, accompanied with a certain degree of creep damage. In contrast, the dominant deformation mechanism of the alloy was dislocation slipping in g matrix and Orowan by-passing through g' particles. As the strain amplitude increased to higher levels, the alloy was subjected to severe plastic deformation damage, while the degree of oxidation damage had been alleviated. Under this condition, the interfacial dislocations could shear into the g' phase with the generated stacking fault or anti-phase boundary. Notably, no recrystallization grains or deformation twins were formed in the DD91 alloy during the IP-TMF experiments at different mechanical strain amplitudes.
关键词fourth-generation single-crystal superalloy thermal-mechanical fatigue fracture characteristic oxidation behavior damage mechanism
资助者National Science and Technology Major Project ; National Key Research and Development Program of China ; Program of CAS Interdisciplinary Innovation Team ; Youth Innovation Promotion Association
DOI10.11900/0412.1961.2022.00309
收录类别SCI
语种英语
资助项目National Science and Technology Major Project[2017-VI-0002-0072] ; National Key Research and Development Program of China[2017YFA0700704] ; Program of CAS Interdisciplinary Innovation Team ; Youth Innovation Promotion Association
WOS研究方向Metallurgy & Metallurgical Engineering
WOS类目Metallurgy & Metallurgical Engineering
WOS记录号WOS:001153599200003
出版者SCIENCE PRESS
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/184057
专题中国科学院金属研究所
通讯作者Wang Xinguang; Sun Xiaofeng
作者单位1.Chinese Acad Sci, Inst Met Res, Shi changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
3.Aero Engine Corp China, Inst Sichuan Gas Turbine Res, Chengdu 610500, Peoples R China
推荐引用方式
GB/T 7714
Tan Zihao,Li Yongmei,Wang Xinguang,et al. In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy[J]. ACTA METALLURGICA SINICA,2024,60(2):154-166.
APA Tan Zihao.,Li Yongmei.,Wang Xinguang.,Zhao Haochuan.,Tan Haibing.,...&Sun Xiaofeng.(2024).In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy.ACTA METALLURGICA SINICA,60(2),154-166.
MLA Tan Zihao,et al."In-Phase Thermal-Mechanical Fatigue Behavior and Damage Mechanism of a Fourth-Generation Ni-Based Single-Crystal Superalloy".ACTA METALLURGICA SINICA 60.2(2024):154-166.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tan Zihao]的文章
[Li Yongmei]的文章
[Wang Xinguang]的文章
百度学术
百度学术中相似的文章
[Tan Zihao]的文章
[Li Yongmei]的文章
[Wang Xinguang]的文章
必应学术
必应学术中相似的文章
[Tan Zihao]的文章
[Li Yongmei]的文章
[Wang Xinguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。