IMR OpenIR
Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation
Yu, Tong1; Wang, Chunyang3; Yang, Huicong1,2; Li, Feng1,2
通讯作者Li, Feng(fli@imr.ac.cn)
2024-03-01
发表期刊JOURNAL OF ENERGY CHEMISTRY
ISSN2095-4956
卷号90页码:191-204
摘要Metal-ion batteries (MIBs), including alkali metal-ion (Li+, Na+, and K+), multi-valent metal-ion (Zn2+, Mg2+, and Al3+), metal-air, and metal-sulfur batteries, play an indispensable role in electrochemical energy storage. However, the performance of MIBs is significantly influenced by numerous variables, resulting in multi-dimensional and long-term challenges in the field of battery research and performance enhancement. Machine learning (ML), with its capability to solve intricate tasks and perform robust data processing, is now catalyzing a revolutionary transformation in the development of MIB materials and devices. In this review, we summarize the utilization of ML algorithms that have expedited research on MIBs over the past five years. We present an extensive overview of existing algorithms, elucidating their details, advantages, and limitations in various applications, which encompass electrode screening, material property prediction, electrolyte formulation design, electrode material characterization, manufacturing parameter optimization, and real-time battery status monitoring. Finally, we propose potential solutions and future directions for the application of ML in advancing MIB development.
关键词Metal-ion battery Machine learning Electrode materials Characterization Status evaluation
DOI10.1016/j.jechem.2023.10.049
收录类别SCI
语种英语
WOS研究方向Chemistry ; Energy & Fuels ; Engineering
WOS类目Chemistry, Applied ; Chemistry, Physical ; Energy & Fuels ; Engineering, Chemical
WOS记录号WOS:001160050600001
出版者ELSEVIER
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/184566
专题中国科学院金属研究所
通讯作者Li, Feng
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China
3.Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
推荐引用方式
GB/T 7714
Yu, Tong,Wang, Chunyang,Yang, Huicong,et al. Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation[J]. JOURNAL OF ENERGY CHEMISTRY,2024,90:191-204.
APA Yu, Tong,Wang, Chunyang,Yang, Huicong,&Li, Feng.(2024).Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation.JOURNAL OF ENERGY CHEMISTRY,90,191-204.
MLA Yu, Tong,et al."Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation".JOURNAL OF ENERGY CHEMISTRY 90(2024):191-204.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Tong]的文章
[Wang, Chunyang]的文章
[Yang, Huicong]的文章
百度学术
百度学术中相似的文章
[Yu, Tong]的文章
[Wang, Chunyang]的文章
[Yang, Huicong]的文章
必应学术
必应学术中相似的文章
[Yu, Tong]的文章
[Wang, Chunyang]的文章
[Yang, Huicong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。