IMR OpenIR
Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites
Liang, Fei1; Wang, Zhe-Xuan2; Li, Mei-Yue1; Zhang, Bin2; Luo, Xue-Mei1; Zhu, Xiao-Fei1; Zhang, Guang-Ping1
通讯作者Zhang, Bin(zhangb@atm.neu.edu.cn) ; Zhang, Guang-Ping(gpzhang@imr.ac.cn)
2024-05-01
发表期刊INTERNATIONAL JOURNAL OF PLASTICITY
ISSN0749-6419
卷号176页码:15
摘要Enhancing the strength of metallic laminates through decreasing the constituent layer thickness from micrometer to nanometer scale is usually accompanied by the degradation of ductility because plastic instability characterized by fatal shear bands inevitably occurs in the early stage of deformation. To overcome the strength-ductility trade-off dilemma, we designed a kind of metallic layered composites (LCs) consisting of nano-grained Ni (grain size: 21-37 nm) and ultrafine nano-grained Ni-W (grain size: 8 nm) constituent layers with layer thickness ranging from microns to tens of nanometers. We found that the strength and ductility of Ni/Ni-W LCs can be simultaneously enhanced by decreasing the layer thickness. Interface-constrained grain growth in the Ni layers with an initial layer thickness of less than 1 mu m enhances strain hardening ability. Thus, strain delocalization characterized by the formation of rectangular strain zones instead of crossed micro shear bands appears in the LCs. Based on the above mechanism, we obtained the optimum ratio of the layer thickness to the grain size for the nano-grained Ni layers as about 15:1, which corresponds to Ni0.25/Ni-W0.025 LCs with the highest tensile strength (1.9 GPa) and elongation to failure (5.5 %). These findings may provide a new path for the design principle of metallic LCs with multi-level microstructural and geometrical scales.
关键词Layered composites Shear band Microstructural dimension Ductility Interface
资助者Strategic Priority Research Program of Chinese Academy of Sciences ; National Natural Science Foundation of China (NSFC) ; Fundamental Research Project of Shenyang National Laboratory for Materials Science
DOI10.1016/j.ijplas.2024.103959
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of Chinese Academy of Sciences[XDB0510303] ; National Natural Science Foundation of China (NSFC)[51971060] ; Fundamental Research Project of Shenyang National Laboratory for Materials Science[L2019R18]
WOS研究方向Engineering ; Materials Science ; Mechanics
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary ; Mechanics
WOS记录号WOS:001217778300001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/186086
专题中国科学院金属研究所
通讯作者Zhang, Bin; Zhang, Guang-Ping
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
2.Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, 3-11 Wenhua Rd, Shenyang 110819, Peoples R China
推荐引用方式
GB/T 7714
Liang, Fei,Wang, Zhe-Xuan,Li, Mei-Yue,et al. Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites[J]. INTERNATIONAL JOURNAL OF PLASTICITY,2024,176:15.
APA Liang, Fei.,Wang, Zhe-Xuan.,Li, Mei-Yue.,Zhang, Bin.,Luo, Xue-Mei.,...&Zhang, Guang-Ping.(2024).Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites.INTERNATIONAL JOURNAL OF PLASTICITY,176,15.
MLA Liang, Fei,et al."Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites".INTERNATIONAL JOURNAL OF PLASTICITY 176(2024):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liang, Fei]的文章
[Wang, Zhe-Xuan]的文章
[Li, Mei-Yue]的文章
百度学术
百度学术中相似的文章
[Liang, Fei]的文章
[Wang, Zhe-Xuan]的文章
[Li, Mei-Yue]的文章
必应学术
必应学术中相似的文章
[Liang, Fei]的文章
[Wang, Zhe-Xuan]的文章
[Li, Mei-Yue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。