Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites | |
Liang, Fei1; Wang, Zhe-Xuan2; Li, Mei-Yue1; Zhang, Bin2; Luo, Xue-Mei1; Zhu, Xiao-Fei1; Zhang, Guang-Ping1 | |
通讯作者 | Zhang, Bin(zhangb@atm.neu.edu.cn) ; Zhang, Guang-Ping(gpzhang@imr.ac.cn) |
2024-05-01 | |
发表期刊 | INTERNATIONAL JOURNAL OF PLASTICITY
![]() |
ISSN | 0749-6419 |
卷号 | 176页码:15 |
摘要 | Enhancing the strength of metallic laminates through decreasing the constituent layer thickness from micrometer to nanometer scale is usually accompanied by the degradation of ductility because plastic instability characterized by fatal shear bands inevitably occurs in the early stage of deformation. To overcome the strength-ductility trade-off dilemma, we designed a kind of metallic layered composites (LCs) consisting of nano-grained Ni (grain size: 21-37 nm) and ultrafine nano-grained Ni-W (grain size: 8 nm) constituent layers with layer thickness ranging from microns to tens of nanometers. We found that the strength and ductility of Ni/Ni-W LCs can be simultaneously enhanced by decreasing the layer thickness. Interface-constrained grain growth in the Ni layers with an initial layer thickness of less than 1 mu m enhances strain hardening ability. Thus, strain delocalization characterized by the formation of rectangular strain zones instead of crossed micro shear bands appears in the LCs. Based on the above mechanism, we obtained the optimum ratio of the layer thickness to the grain size for the nano-grained Ni layers as about 15:1, which corresponds to Ni0.25/Ni-W0.025 LCs with the highest tensile strength (1.9 GPa) and elongation to failure (5.5 %). These findings may provide a new path for the design principle of metallic LCs with multi-level microstructural and geometrical scales. |
关键词 | Layered composites Shear band Microstructural dimension Ductility Interface |
资助者 | Strategic Priority Research Program of Chinese Academy of Sciences ; National Natural Science Foundation of China (NSFC) ; Fundamental Research Project of Shenyang National Laboratory for Materials Science |
DOI | 10.1016/j.ijplas.2024.103959 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Strategic Priority Research Program of Chinese Academy of Sciences[XDB0510303] ; National Natural Science Foundation of China (NSFC)[51971060] ; Fundamental Research Project of Shenyang National Laboratory for Materials Science[L2019R18] |
WOS研究方向 | Engineering ; Materials Science ; Mechanics |
WOS类目 | Engineering, Mechanical ; Materials Science, Multidisciplinary ; Mechanics |
WOS记录号 | WOS:001217778300001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/186086 |
专题 | 中国科学院金属研究所 |
通讯作者 | Zhang, Bin; Zhang, Guang-Ping |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China 2.Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, 3-11 Wenhua Rd, Shenyang 110819, Peoples R China |
推荐引用方式 GB/T 7714 | Liang, Fei,Wang, Zhe-Xuan,Li, Mei-Yue,et al. Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites[J]. INTERNATIONAL JOURNAL OF PLASTICITY,2024,176:15. |
APA | Liang, Fei.,Wang, Zhe-Xuan.,Li, Mei-Yue.,Zhang, Bin.,Luo, Xue-Mei.,...&Zhang, Guang-Ping.(2024).Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites.INTERNATIONAL JOURNAL OF PLASTICITY,176,15. |
MLA | Liang, Fei,et al."Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites".INTERNATIONAL JOURNAL OF PLASTICITY 176(2024):15. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论