IMR OpenIR
Additively manufactured copper alloy with heterogeneous nanoprecipitates-dislocation architecture for superior strength-ductility-conductivity synergy
Wang, Liqiang1; Qu, Shuo2; Fu, Huangliu3; Zhou, Xin4; Hu, Zongxin2; Wen, Yaojie5; Zhang, Baicheng5; Gan, Bin6; Song, Xu2; Lu, Yang7
通讯作者Gan, Bin(ganb@szlab.ac.cn) ; Song, Xu(xsong@mae.cuhk.edu.hk) ; Lu, Yang(ylu1@hku.hk)
2024-03-25
发表期刊ADDITIVE MANUFACTURING
ISSN2214-8604
卷号84页码:14
摘要Employing a single strategy that overcomes the strength-ductility-conductivity trade-off in copper alloys has proven to be challenging. In this study, we introduced a novel heterogeneous nanoprecipitate-dislocation (HND) architecture in CuCrNb alloy consisting of a multi-modal core-shell grain structure and an interconnected dislocation network pinned by abundant nanoprecipitates. Our CuCrNb-HND alloy exhibited superior strength-ductility synergy at both room and elevated temperatures. In particular, aging treatment-induced highdensity coherent Cr secondary nanoprecipitates into the HND skeleton endowed the CuCrNb-HND450 alloy with a high tensile strength of over 1 GPa and a conductivity of similar to 50%, surpassing those of most of the reported additively manufactured copper alloys. An in situ transmission electron microscopy heating experiment revealed the superior thermal stability of the HND architecture. Hierarchical strengthening contributed to the enhancement of mechanical properties. At the micrometer scale, the harmonic grain structure with a strong fine-grained shell and a ductile coarse-grained core effectively improved mechanical properties by suppressing localized plastic deformation. At the nanometer scale, the synergistic effect of the nanoprecipitate-dislocation network further improved the alloy strength by slowing down dislocation movement. Overall, our proposed HND architecture provides an efficient pathway for developing high-strength and high-conductivity copper alloys.
关键词Additive manufacturing Copper alloys Heterogeneous structure Nanoprecipitates In situ TEM
资助者Hong Kong RGC General Research Fund ; Collaborative Research Fund ; Key R & D Programmes from the Science and Technology Department of Sichuan Province (Key Science & Technology Project) ; Changsha Municipal Science and Technology Bureau ; University Grants Committee (Hong Kong) Collaborative Research Fund ; Innovation and Technology Fund of the Government of the Hong Kong Special Administrative Region
DOI10.1016/j.addma.2024.104100
收录类别SCI
语种英语
资助项目Hong Kong RGC General Research Fund[11200623] ; Collaborative Research Fund[C7074-23G] ; Key R & D Programmes from the Science and Technology Department of Sichuan Province (Key Science & Technology Project)[2022YFSY0001] ; Changsha Municipal Science and Technology Bureau[kh2201035] ; University Grants Committee (Hong Kong) Collaborative Research Fund[C4074-22G] ; University Grants Committee (Hong Kong) Collaborative Research Fund[C4002-22Y] ; Innovation and Technology Fund of the Government of the Hong Kong Special Administrative Region[ITP/028/22TP]
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Manufacturing ; Materials Science, Multidisciplinary
WOS记录号WOS:001240715400001
出版者ELSEVIER
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/186847
专题中国科学院金属研究所
通讯作者Gan, Bin; Song, Xu; Lu, Yang
作者单位1.City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
2.Chinese Univ Hong Kong, Dept Mech & Automation Engn, Hong Kong, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China
4.Westfalische Wilhelms Univ, Phys Inst, D-48149 Munster, Germany
5.Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
6.Suzhou Lab, 388 Ruoshui St, Suzhou 215123, Jiangsu, Peoples R China
7.Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Wang, Liqiang,Qu, Shuo,Fu, Huangliu,et al. Additively manufactured copper alloy with heterogeneous nanoprecipitates-dislocation architecture for superior strength-ductility-conductivity synergy[J]. ADDITIVE MANUFACTURING,2024,84:14.
APA Wang, Liqiang.,Qu, Shuo.,Fu, Huangliu.,Zhou, Xin.,Hu, Zongxin.,...&Lu, Yang.(2024).Additively manufactured copper alloy with heterogeneous nanoprecipitates-dislocation architecture for superior strength-ductility-conductivity synergy.ADDITIVE MANUFACTURING,84,14.
MLA Wang, Liqiang,et al."Additively manufactured copper alloy with heterogeneous nanoprecipitates-dislocation architecture for superior strength-ductility-conductivity synergy".ADDITIVE MANUFACTURING 84(2024):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Liqiang]的文章
[Qu, Shuo]的文章
[Fu, Huangliu]的文章
百度学术
百度学术中相似的文章
[Wang, Liqiang]的文章
[Qu, Shuo]的文章
[Fu, Huangliu]的文章
必应学术
必应学术中相似的文章
[Wang, Liqiang]的文章
[Qu, Shuo]的文章
[Fu, Huangliu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。