IMR OpenIR
Nano-ZnO-modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair
Wei, Penggong1,2; Wang, Ning3; Zhang, Qiyue1,2; Wang, Wanfeng1,2; Sun, Hui1,2; Liu, Zengqian4; Yan, Tingting5; Wang, Qiang1,2; Qiu, Lihong1,2
通讯作者Yan, Tingting(yan@kust.edu.cn) ; Wang, Qiang(mfqwang@cmu.edu.cn) ; Qiu, Lihong(lhqiu@cmu.edu.cn)
2024-06-07
发表期刊REGENERATIVE BIOMATERIALS
ISSN2056-3418
卷号11页码:16
摘要Hydroxyapatite (HA) whisker (HAw) represents a distinct form of HA characterized by its high aspect ratio, offering significant potential for enhancing the mechanical properties of bone tissue engineering scaffolds. However, the limited osteoinductivity of HAw hampers its widespread application. In this investigation, we observed HAw-punctured osteoblast membranes and infiltrated the cell body, resulting in mechanical damage to cells that adversely impacted osteoblast proliferation and differentiation. To address this challenge, we developed nano-zinc oxide particle-modified HAw (nano-ZnO/HAw). Acting as a reinforcing and toughening agent, nano-ZnO/HAw augmented the compressive strength and ductility of the matrix materials. At the same time, the surface modification with nano-ZnO particles improved osteoblast differentiation by reducing the mechanical damage from HAw to cells and releasing zinc ion, the two aspects collectively promoted the osteoinductivity of HAw. Encouragingly, the osteoinductive potential of 5% nano-ZnO/HAw and 10% nano-ZnO/HAw was validated in relevant rat models, demonstrating the efficacy of this approach in promoting new bone formation in vivo. Our findings underscore the role of nano-ZnO particle surface modification in enhancing the osteoinductivity of HAw from a physical standpoint, offering valuable insights into the development of bone substitutes with favorable osteoinductive properties while simultaneously bolstering matrix material strength and toughness.
关键词hydroxyapatite whisker nano-zinc oxide particles surface modification mechanical damage osteoblast differentiation bone defect repair
资助者National Key R&D Program of China ; Liaoning Medical-Engineering Joint Fund ; Yanglei Academician Expert Workstation of Yunnan Province ; Yunnan Innovation Team of Graphene Mechanism Research and Application Industrialization
DOI10.1093/rb/rbae051
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2020YFA0710404] ; Liaoning Medical-Engineering Joint Fund[2022-YGJC-01] ; Yanglei Academician Expert Workstation of Yunnan Province[202205AF15025] ; Yunnan Innovation Team of Graphene Mechanism Research and Application Industrialization[202305AS350017]
WOS研究方向Materials Science
WOS类目Materials Science, Biomaterials
WOS记录号WOS:001240648700001
出版者OXFORD UNIV PRESS
引用统计
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/186884
专题中国科学院金属研究所
通讯作者Yan, Tingting; Wang, Qiang; Qiu, Lihong
作者单位1.China Med Univ, Sch & Hosp Stomatol, Shenyang 110002, Peoples R China
2.Liaoning Prov Key Lab Oral Dis, Shenyang 110002, Peoples R China
3.China Med Univ, Hosp 1, Dept Plast Surg, Shenyang 110001, Peoples R China
4.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China
5.Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Peoples R China
推荐引用方式
GB/T 7714
Wei, Penggong,Wang, Ning,Zhang, Qiyue,et al. Nano-ZnO-modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair[J]. REGENERATIVE BIOMATERIALS,2024,11:16.
APA Wei, Penggong.,Wang, Ning.,Zhang, Qiyue.,Wang, Wanfeng.,Sun, Hui.,...&Qiu, Lihong.(2024).Nano-ZnO-modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair.REGENERATIVE BIOMATERIALS,11,16.
MLA Wei, Penggong,et al."Nano-ZnO-modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair".REGENERATIVE BIOMATERIALS 11(2024):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Penggong]的文章
[Wang, Ning]的文章
[Zhang, Qiyue]的文章
百度学术
百度学术中相似的文章
[Wei, Penggong]的文章
[Wang, Ning]的文章
[Zhang, Qiyue]的文章
必应学术
必应学术中相似的文章
[Wei, Penggong]的文章
[Wang, Ning]的文章
[Zhang, Qiyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。