IMR OpenIR
An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning
Shi, Shuai1; Liu, Xuewen1; Wang, Zhongan1; Chang, Hai1; Wu, Yingna1; Yang, Rui1,2; Zhai, Zirong1
通讯作者Zhai, Zirong()
2024-06-30
发表期刊JOURNAL OF MANUFACTURING PROCESSES
ISSN1526-6125
卷号120页码:1130-1140
摘要Directed Energy Deposition (DED) is crucial in the ongoing industrial revolution, providing a unique ability to fabricate high-quality components with complex shapes. However, the determination of key process parameters, such as scan sequence, laser power, and scanning speed, often relies on offline trial-and-error or heuristic methods. These methods are not only suboptimal but also lack generalizability. A major challenge is the nonuniform temperature distribution during manufacturing, which affects the uniformity of the mechanical properties. To overcome these challenges, we have developed a framework based on Deep Reinforcement Learning (DRL). This framework dynamically adjusts process parameters to achieve an optimal control policy. Additionally, we introduce a cost-effective temperature simulation model of the deposition process. This model is particularly useful for researchers testing the proximal policy optimization algorithm. The experimental results demonstrate that DRL policies substantially improve temperature uniformity in Inconel 718, enhancing hardness variability with improvements of 31.8 % and 27.1 % in horizontal and vertical building directions, respectively. This research marks an important step toward achieving a highly intelligent and automated optimization of process parameters. It also proves to be robust and computationally efficient for future online implementation.
关键词Directed energy deposition Temperature simulator Deep reinforcement learning Proximal policy optimization Vickers hardness measurement
资助者Double First -Class Initiative Fund ; ShanghaiTech University ; CAS Interdisciplinary Innovation Team Project
DOI10.1016/j.jmapro.2024.05.001
收录类别SCI
语种英语
资助项目Double First -Class Initiative Fund ; ShanghaiTech University ; CAS Interdisciplinary Innovation Team Project[JCTD- 2020-10]
WOS研究方向Engineering
WOS类目Engineering, Manufacturing
WOS记录号WOS:001242384800001
出版者ELSEVIER SCI LTD
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/186986
专题中国科学院金属研究所
通讯作者Zhai, Zirong
作者单位1.ShanghaiTech Univ, Ctr Adapt Syst Engn, 393 Huaxia Middle Rd, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Shi, Shuai,Liu, Xuewen,Wang, Zhongan,et al. An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning[J]. JOURNAL OF MANUFACTURING PROCESSES,2024,120:1130-1140.
APA Shi, Shuai.,Liu, Xuewen.,Wang, Zhongan.,Chang, Hai.,Wu, Yingna.,...&Zhai, Zirong.(2024).An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning.JOURNAL OF MANUFACTURING PROCESSES,120,1130-1140.
MLA Shi, Shuai,et al."An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning".JOURNAL OF MANUFACTURING PROCESSES 120(2024):1130-1140.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shi, Shuai]的文章
[Liu, Xuewen]的文章
[Wang, Zhongan]的文章
百度学术
百度学术中相似的文章
[Shi, Shuai]的文章
[Liu, Xuewen]的文章
[Wang, Zhongan]的文章
必应学术
必应学术中相似的文章
[Shi, Shuai]的文章
[Liu, Xuewen]的文章
[Wang, Zhongan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。