IMR OpenIR
More severe surface relief but stronger fatigue resistance at small scales: Vacancy-assisted fatigue damage mechanism
Chen, Honglei1; Luo, Xuemei1; Zhang, Mingyuan1,2; Wen, Ming3; Zhu, Xiaofei1; Zhang, Guangping1
通讯作者Luo, Xuemei(xmluo@imr.ac.cn) ; Zhang, Guangping(gpzhang@imr.ac.cn)
2024-08-01
发表期刊ACTA MATERIALIA
ISSN1359-6454
卷号274页码:15
摘要Surface relief in forms of extrusions and intrusions as the substantial feature of early fatigue damage is one of the most important phenomena studied in metal fatigue. The most common surface relief models in bulk metals are agreed to be correlated with the formation of typical dislocation patterns as persistent slip bands (PSBs), while little is known about the fundamental mechanisms at submicron and even nanometer scales where dislocation pattern formation is fully inhibited. Here, as exampled with thin Au films, the underlying fatigue damage mechanism at small scales is investigated through the quantitative characterization of fatigue damages. Continuous generation and migration of vacancies is found to be crucial for the shape of extrusion/intrusions and kinetics of their growth at submicron and even nanometer scales. Due to the degraded dislocation interaction and intensified vacancy diffusion, the delayed vacancy accumulation in the small-scale metal interior suppresses the extrusion and interface void formation in thinner films, which finally leads to the superior ability to support tremendous surface relief and strong fatigue resistance. The finding of the vacancy-dominated fatigue mechanism at small scales extends our understanding of the metal fatigue mechanisms down to the submicron and even nanometer scales and suggests a novel interface engineering strategy by vacancy behavior modulation for fatigue-tolerance material design.
关键词Extrusion Fatigue Vacancies Damage mechanism Nanocrystal
资助者National Natural Science Foundation of China (NSFC) ; Yunnan Province Expert Workstation Project ; Strategic Priority Research Program of Chinese Academy of Sciences ; Foundation for Outstanding Young Scholar - Institute of Metal Research (IMR)
DOI10.1016/j.actamat.2024.120028
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[52071319] ; Yunnan Province Expert Workstation Project[202305AF150171] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB0510303] ; Foundation for Outstanding Young Scholar - Institute of Metal Research (IMR)
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:001265950800001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/188017
专题中国科学院金属研究所
通讯作者Luo, Xuemei; Zhang, Guangping
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, 72 Wenhua Rd, Shenyang 110016, Peoples R China
3.Sino Platinum Met Co Ltd, 988 Keji Rd,High Tech Dev Zone, Kunming 650106, Peoples R China
推荐引用方式
GB/T 7714
Chen, Honglei,Luo, Xuemei,Zhang, Mingyuan,et al. More severe surface relief but stronger fatigue resistance at small scales: Vacancy-assisted fatigue damage mechanism[J]. ACTA MATERIALIA,2024,274:15.
APA Chen, Honglei,Luo, Xuemei,Zhang, Mingyuan,Wen, Ming,Zhu, Xiaofei,&Zhang, Guangping.(2024).More severe surface relief but stronger fatigue resistance at small scales: Vacancy-assisted fatigue damage mechanism.ACTA MATERIALIA,274,15.
MLA Chen, Honglei,et al."More severe surface relief but stronger fatigue resistance at small scales: Vacancy-assisted fatigue damage mechanism".ACTA MATERIALIA 274(2024):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Honglei]的文章
[Luo, Xuemei]的文章
[Zhang, Mingyuan]的文章
百度学术
百度学术中相似的文章
[Chen, Honglei]的文章
[Luo, Xuemei]的文章
[Zhang, Mingyuan]的文章
必应学术
必应学术中相似的文章
[Chen, Honglei]的文章
[Luo, Xuemei]的文章
[Zhang, Mingyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。