IMR OpenIR
Physics-informed transfer learning model for fatigue life prediction of IN718 alloy
Chen, Baihan1,2; Zhang, Jianfeng1; Zhou, Shangcheng1; Zhang, Guangping3; Xu, Fang1
通讯作者Zhang, Jianfeng(jianfengzh@126.com)
2024-09-01
发表期刊JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
ISSN2238-7854
卷号32页码:2767-2779
摘要To address the challenges posed by inadequate data and data utilization in multiple scenarios of fatigue loading, a Physics-informed Transfer Learning (PITL) model has been developed to predict the fatigue life of IN718 superalloy. Strain-controlled low-cycle fatigue tests were carried out at 400 degrees C with three distinct strain ratios, which were subsequently segmented for individual transfer learning tests. PITL models with significant engineering value were built by integrating transfer learning methodologies rooted in TrAdaBoost with a physicsbased model that hinges on the principles of equivalent strain theory. The findings suggest that PITL models exhibit improved accuracy and greater robustness compared to both transfer learning and physics models.
关键词Fatigue life prediction Transfer learning Physical information Hybrid models
资助者National Natural Science Foundation of China ; Phosphor Project of Shanghai Science and Technology
DOI10.1016/j.jmrt.2024.08.075
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[52105163] ; Phosphor Project of Shanghai Science and Technology[22QB1406400]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:001301748200001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/189320
专题中国科学院金属研究所
通讯作者Zhang, Jianfeng
作者单位1.AECC Commercial Aircraft Engine Co Ltd, Mat Engn Dept, Shanghai 201100, Peoples R China
2.Tsinghua Univ, Dept Engn Phys, 30 Shuangqing Rd, Beijing 100084, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Chen, Baihan,Zhang, Jianfeng,Zhou, Shangcheng,et al. Physics-informed transfer learning model for fatigue life prediction of IN718 alloy[J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T,2024,32:2767-2779.
APA Chen, Baihan,Zhang, Jianfeng,Zhou, Shangcheng,Zhang, Guangping,&Xu, Fang.(2024).Physics-informed transfer learning model for fatigue life prediction of IN718 alloy.JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T,32,2767-2779.
MLA Chen, Baihan,et al."Physics-informed transfer learning model for fatigue life prediction of IN718 alloy".JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T 32(2024):2767-2779.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Baihan]的文章
[Zhang, Jianfeng]的文章
[Zhou, Shangcheng]的文章
百度学术
百度学术中相似的文章
[Chen, Baihan]的文章
[Zhang, Jianfeng]的文章
[Zhou, Shangcheng]的文章
必应学术
必应学术中相似的文章
[Chen, Baihan]的文章
[Zhang, Jianfeng]的文章
[Zhou, Shangcheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。