Unifie d mixe d conductivity model | |
Li, X. T.1; Zhang, Z. J.1,2; Dai, R. J.1; Liu, R.1; Qu, Z.1,2; Wang, S. G.1; Li, H. T.3; Hu, W. J.1,2; Wang, Q. Z.1,2; Ma, Z. Y.1,2; Zhang, Z. F.1,2 | |
通讯作者 | Zhang, Z. J.(zjzhang@imr.ac.cn) ; Zhang, Z. F.(zhfzhang@imr.ac.cn) |
2025-04-01 | |
发表期刊 | JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
![]() |
ISSN | 1005-0302 |
卷号 | 213页码:80-89 |
摘要 | Matter conductivities are crucial physical properties that directly determine the engineering application value of materials. In reality, the majority of materials are multiphase composites. However, there is currently a lack of theoretical models to accurately predict the conductivities of composite materials. In this study, we develop a unified mixed conductivity (UMC) model, achieving unity in three aspects: (1) a unified description and prediction for different conductivities, including elastic modulus, thermal conductivity, electrical conductivity, magnetic permeability, liquid permeability coefficient, and gas diffusion coefficient; (2) a unified-form governing equation for mixed conductivities of various composite structures, conforming to the Riccati equation; (3) a unified-form composite structure, i.e., a three-dimensional multiphase interpenetrating cuboid structure, encompassing over a dozen of typical composite structures as its specific cases. The UMC model is applicable for predicting the conductivity across six different types of physical fields and over a dozen different composite structures, providing a broad range of applications. Therefore, the current study deepens our understanding of the conduction phenomena and offers a powerful theoretical tool for predicting the conductivities of composite materials and optimizing their structures, which holds significant scientific and engineering implications. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. |
关键词 | Composite materials Conductivity Elastic modulus Permeability coefficient Diffusion coefficient Multiphase interpenetrating structure |
资助者 | National Natural Science Foundation of China (NSFC) ; Youth Innovation Promotion Association CAS ; IMR Innovation Fund ; IMR Outstanding Scholar Position |
DOI | 10.1016/j.jmst.2024.06.046 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (NSFC)[52322105] ; National Natural Science Foundation of China (NSFC)[52321001] ; National Natural Science Foundation of China (NSFC)[52130002] ; National Natural Science Foundation of China (NSFC)[U22A20114] ; National Natural Science Foundation of China (NSFC)[52371084] ; Youth Innovation Promotion Association CAS[2021192] ; IMR Innovation Fund[2023-ZD01] ; IMR Outstanding Scholar Position[E451A804] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:001301213300001 |
出版者 | JOURNAL MATER SCI TECHNOL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/189438 |
专题 | 中国科学院金属研究所 |
通讯作者 | Zhang, Z. J.; Zhang, Z. F. |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China 3.Southwest Jiaotong Univ, Natl Lab Rail Transit, Chengdu 610031, Peoples R China |
推荐引用方式 GB/T 7714 | Li, X. T.,Zhang, Z. J.,Dai, R. J.,et al. Unifie d mixe d conductivity model[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2025,213:80-89. |
APA | Li, X. T..,Zhang, Z. J..,Dai, R. J..,Liu, R..,Qu, Z..,...&Zhang, Z. F..(2025).Unifie d mixe d conductivity model.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,213,80-89. |
MLA | Li, X. T.,et al."Unifie d mixe d conductivity model".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 213(2025):80-89. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论