IMR OpenIR
Machine learning-enabled design of Fe-based bulk metallic glasses for superior thermal neutron absorption properties
Gao, Jin1,2; Hou, Jianxin3; Wu, Yuting1; Ji, Baoting2; Wang, Debin2; Qiu, Keqiang1; You, Junhua1; Wang, Jianqiang2
通讯作者Hou, Jianxin(jxhou@lam.ln.cn) ; Qiu, Keqiang(kqqiu@sut.edu.cn) ; Wang, Jianqiang(jqwang@imr.ac.cn)
2025-01-05
发表期刊JOURNAL OF ALLOYS AND COMPOUNDS
ISSN0925-8388
卷号1010页码:10
摘要The pressing demand for innovative Fe-based amorphous alloys that excel in both glass-forming ability (GFA) and neutron-absorption has led to the exploration of novel alloying concepts incorporating high levels of B and Gd. In this study, we utilized AutoGluon, an advance autoML framework, to pinpoint the optimal feature sets for predicting the Dmax in Fe-based bulk metallic glasses (BMGs), effectively excluding characteristic temperatures from our analysis. This approach was validated across a dataset of 241 data points, achieving an R2 of 0.817 and an MSE of 1.88. Further, we applied the SHAP method to determine critical conditions that enhance GFA, aligning these with the feature distribution of the extrapolated BMGs. Consequently, we successfully fabricated the alloy (Fe0.72B0.22Nb0.04Cr0.02)96.5Gd3.5, which not only reached a Dmax of 3 mm but also exhibited superior neutron absorption properties. This research enhances our understanding of GFA and supports the development of innovative Fe-based BMGs with optimized material properties.
关键词Bulk metallic glasses Machine learning Nuclear energy Glass-forming ability Neutron absorption
资助者National Natural Science Foundation of China ; Key Research Program of the Chinese Academy of Sciences ; Liaoning Applied Basic Research Program ; Basic scientific research project of Liaoning Province Department of Education ; Shenyang Science and Technology Project
DOI10.1016/j.jallcom.2024.177595
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[U1908219] ; National Natural Science Foundation of China[52171163] ; Key Research Program of the Chinese Academy of Sciences[ZDRW-CN-2021-2-2] ; Liaoning Applied Basic Research Program[2023JH2/101300011] ; Basic scientific research project of Liaoning Province Department of Education[LJKZZ20220024] ; Shenyang Science and Technology Project[23-407-3-13]
WOS研究方向Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Chemistry, Physical ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:001361340400001
出版者ELSEVIER SCIENCE SA
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/191729
专题中国科学院金属研究所
通讯作者Hou, Jianxin; Qiu, Keqiang; Wang, Jianqiang
作者单位1.Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
3.Liaoning Acad Mat, Inst Mat Intelligent Technol, Shenyang 110004, Peoples R China
推荐引用方式
GB/T 7714
Gao, Jin,Hou, Jianxin,Wu, Yuting,et al. Machine learning-enabled design of Fe-based bulk metallic glasses for superior thermal neutron absorption properties[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2025,1010:10.
APA Gao, Jin.,Hou, Jianxin.,Wu, Yuting.,Ji, Baoting.,Wang, Debin.,...&Wang, Jianqiang.(2025).Machine learning-enabled design of Fe-based bulk metallic glasses for superior thermal neutron absorption properties.JOURNAL OF ALLOYS AND COMPOUNDS,1010,10.
MLA Gao, Jin,et al."Machine learning-enabled design of Fe-based bulk metallic glasses for superior thermal neutron absorption properties".JOURNAL OF ALLOYS AND COMPOUNDS 1010(2025):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Jin]的文章
[Hou, Jianxin]的文章
[Wu, Yuting]的文章
百度学术
百度学术中相似的文章
[Gao, Jin]的文章
[Hou, Jianxin]的文章
[Wu, Yuting]的文章
必应学术
必应学术中相似的文章
[Gao, Jin]的文章
[Hou, Jianxin]的文章
[Wu, Yuting]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。