IMR OpenIR
STUDIES ON THE FRACTAL DIMENSION OF A FRACTURE SURFACE FORMED BY SLOW STABLE CRACK-PROPAGATION
Q. Y. Long; L. Suqin; C. W. Lung
1991
发表期刊Journal of Physics D-Applied Physics
ISSN0022-3727
卷号24期号:4页码:602-607
摘要Fractal dimensions of different parts of a fracture surface formed by slow stable crack propagation, induced by the combined effect of hydrogen and static bending moment, were determined using the method of fracture profile analysis. The results showed that the fractal dimension increases with increasing transgranular fracture which increases as the crack propagates. This means that the increase of the fractal dimension responds to the increase of the energy needed to form the fracture surface, and in our case the process of forming a fracture surface by slow stable crack propagation is one of increasing fractal dimension of the fracture surface; when the fractal dimension reaches a critical value, the crack propagation becomes unstable.
部门归属acad sinica,int ctr mat phys,shenyang 110015,peoples r china.;long, qy (reprint author), acad sinica,inst met res,2-6 wenhua rd,shenyang 110015,peoples r china
关键词Fractography
URL查看原文
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/39419
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
Q. Y. Long,L. Suqin,C. W. Lung. STUDIES ON THE FRACTAL DIMENSION OF A FRACTURE SURFACE FORMED BY SLOW STABLE CRACK-PROPAGATION[J]. Journal of Physics D-Applied Physics,1991,24(4):602-607.
APA Q. Y. Long,L. Suqin,&C. W. Lung.(1991).STUDIES ON THE FRACTAL DIMENSION OF A FRACTURE SURFACE FORMED BY SLOW STABLE CRACK-PROPAGATION.Journal of Physics D-Applied Physics,24(4),602-607.
MLA Q. Y. Long,et al."STUDIES ON THE FRACTAL DIMENSION OF A FRACTURE SURFACE FORMED BY SLOW STABLE CRACK-PROPAGATION".Journal of Physics D-Applied Physics 24.4(1991):602-607.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Q. Y. Long]的文章
[L. Suqin]的文章
[C. W. Lung]的文章
百度学术
百度学术中相似的文章
[Q. Y. Long]的文章
[L. Suqin]的文章
[C. W. Lung]的文章
必应学术
必应学术中相似的文章
[Q. Y. Long]的文章
[L. Suqin]的文章
[C. W. Lung]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。