IMR OpenIR
Al基非晶及其复合材料的制备与性能研究
牟娟
学位类型博士
导师胡壮麒 ; 张海峰
2012
学位授予单位中国科学院金属研究所
学位授予地点北京
学位专业材料学
关键词Al基非晶合金 熔体处理 热稳定性 熔化行为 力学性能 Al-based Amorphous Alloy Melting Treatment Thermal Stability Melting Behaviors
摘要Al合金因其优异的性能广泛地应用于日常生产、生活中。近年来,随着环境问题的日益突出和大众环保意识的日益增强,研究和开发新型高强Al合金成为当前研究的热点问题之一。Al基非晶合金作为一种结构有别于传统晶态合金的新型Al合金,有着优异的物理、化学性能。但是,弱玻璃形成能力严重制约Al基非晶合金的应用。致力于提高Al基非晶合金的玻璃形成能力的研究未取得较大进展。随着非晶领域研究的深入,发现形成非晶合金的熔体结构有别于传统合金,具有高堆垛密度、高稳定性等特点。而合金熔体的特性与合金的凝固行为及微观组织结构密切相关。这为以熔体特性为导向制备高性能材料的工作留下了发展空间。本工作通过熔体处理、液相相变、快速凝固等技术成功制备了块体Al基非晶、非晶复合材料和高强Al合金。研究了Al基合金熔体中团簇结构与温度的依存关系,制定了先将熔体过热至高温后降低温度然后浇铸的熔体处理方法。该熔体处理的方法可以有效地消除非晶熔体中的残留高温相,消除异质形核源,稳定合金熔体,从而达到提高合金非晶形成能力和热稳定性的目的。通过熔体处理的方法成功地将Al-Ni-La非晶合金的临界尺寸从几百微米提高至1mm, Al-Ni-Y非晶合金也由几十微米提高至0.75mm。力学性能测试结果显示Al85.5Ni9.5La5和Al84.5Ni5.5Y10块体非晶合金的屈服强度分别为950MPa和1090MPa,抗压强度分别为1180MPa和1150MPa。其中Al85.5Ni9.5La5非晶合金有3%的塑性变形能力。两种非晶合金的失效模式和断口形貌均具有非晶合金的典型特征,即呈现为剪切断裂模式和脉状花纹。非晶基复合材料是在非晶合金的基础上发展起来的一类新型材料。第二相的添加导致复合材料中出现了大量的界面。作为结构、成分和能量的突变点,界面对非晶复合材料的各方面性能都有明显的影响。本工作通过液相分离的反应制备出了含有纳米In颗粒的Al基非晶复合材料。系统地研究了界面对纳米In颗粒和非晶基体的热力学行为的影响。非晶基体无序的原子结构导致复合材料中固/固和固/液界面能的变化,使得纳米In颗粒和Al基非晶基体分别表现出提前熔化和分阶段晶化的热力学行为。建立了简单的界面模型,推导出晶体/非晶基体、液体/非晶基体、晶体/晶体基体和液体/晶体基体的界面能表达式,计算结果不仅很好地解释了以上实验现象,而且与文献报道的多个体系的实验结果相符合。考虑非晶合金熔体凝固组织的特性与传统Al合金强化机理是相统一的,在Al-Ni-La非晶合金体系中制备了新型高强Al合金。所制备合金的组织为Al、具有局域的方向性的Al3Ni和块状的Al11La3三相。合金的微观组织与力学性能具有强烈的成分依赖性。系列合金中强度最高达到1127MPa,并且有一定的塑性变形能力。通过实验观察和有限元模拟结合的方法研究揭示了该系列合金的变形和破坏机理,即具有局域方向性的Al3Ni相在变形过程中有着重要的强化和协调变形的作用,而较脆的Al11La3相在合金中充当强化相的作用,但随着合金强度的提高,Al11La3相将先破坏,担当裂纹源角色,导致合金失效。该系列高强Al合金的制备和变形断裂机理的揭示为制备新型高强Al合金提供了新的思路。
其他摘要Aluminum alloy has been widely used in daily life due to its excellent properties. In recent years, as the environmental problems deteriorate and the environmental protection consciousness enhances, developing new high strength Al alloys becomes one of the hottest issue in the field of materials science. As a brand-new kind of Al alloys, the atomic structure of Al-based metallic glasses (MGs) is distinguish from that of the conventional alloys, leading to the outstanding physical and chemistry properties. However, their industrial application is greatly limited by the poor glass forming ability (GFA). The effort in improving GFA of Al-based MGs is not rewarded. At present, most of Al-based MGs have been prepared into the samples with a size in a micron scale. But the present investigations tell us that the melt of glass forming alloy is of dense randomly packed atomic configurations and high thermal stability. These features of the melt will obviously affect the solidification process and microstructure formation. Thus, a space is left to prepare materials with good performance with the aforementioned features of the melt. In this work, Al-based bulk MG (BMG), MG matrix composite (MGMC) and high strength Al alloy (HSAA) are synthesized with this view by melt treatment, liquid phase transformation and rapid solidification. Through studying the dependence between local ordering clusters in the melt of Al alloys and the temperature, a two-step melt treatment is established that the alloy is firstly heated to a temperature 1.4 times as high as liquidus temperature (Tl), and then cooled down to a lower temperature of about 100K higher than Tl. The results show the melt treatment effectively eliminates the high-melting-temperature phase in the melt, stabilizes the supercooled liquid, and eventually improves GFA and thermal stability of the alloy. The critical size of the amorphous samples was improved from micron to millimeter for Al-Ni-La alloy and Al-Ni-Y alloy. The Al-based BMGs show excellent mechanical properties. The compressive strengths of the Al85.5Ni9.5La5 and Al84.5Ni5.5Y10 are 1180MPa and 1150MPa, respectively, and the plastic strain is 3% for the Al85.5Ni9.5La5 BMG. Both of the alloys display the typical shear deformation and the vein pattern as most monolithic BMGs do. MGMC has been developed by the addition of the second phase into MG matrix. As the saltation of the structure, energy and composition, the interface greatly influences the properties of materials. In this work, a MGMC of In nano-particles embedded in Al-based amorphous matrix has been synthesized in immiscible system. The influence of interface on the thermal properties of the composite was systematically studied. The disordered structure of the amorphous matrix induces the change of the interfacial energies, which leads to the melting temperature depression of the In nano-particles and the multistage crystallization behaviors of MG matrix. A simple physical model of interface structure was built to calculate the interfacial energy. The calculated results not only well explain the experimental result stated above, but also are coincident with the results in some systems reported previously. Considering the coherence of the characteristics of solidification structure of the glass forming melt and the strengthening mechanisms operating in Al alloys, it is expected that using glass forming melt to synthesize new high strength Al alloy. In this paper, Al-Ni-La system is chosen to serve this purpose. The microstructures of the studied alloys are Al, Al11La3 and Al3Ni phases. The structure and mechanical properties were dependent on the composition of the alloy. The highest strength is up to 1127MPa among the alloys with a considerable plasticity. Through the experiments and simulations, the deformation mechanisms of the alloys were studied. The Al3Ni phases with different direction have great strengthening effect and deformation coordination function. Compared to the Al3Ni phase, the Al11La3 phase is a little more brittle. When the stress level becomes high, the Al11La3 phase is broken and serves the origin of the crack. All these results will provide a new way to develop the new type of high strength Al alloy.
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/64489
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
牟娟. Al基非晶及其复合材料的制备与性能研究[D]. 北京. 中国科学院金属研究所,2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[牟娟]的文章
百度学术
百度学术中相似的文章
[牟娟]的文章
必应学术
必应学术中相似的文章
[牟娟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。