IMR OpenIR
Modeling of morphological evolution of columnar dendritic grains in the molten pool of gas tungsten arc welding
R. H. Han; W. C. Dong; S. P. Lu; D. Z. Li; Y. Y. Li
2014
Source PublicationComputational Materials Science
ISSN0927-0256
Volume95Pages:351-361
AbstractA macro-micro coupled model for epitaxial nucleation and the subsequent competitive dendrite growth was developed to study the morphological evolution of both dendrite and grain structures in molten pool of the gas tungsten arc welding (GTAW) for Fe-C alloy. The simulation of heat and mass transfer in molten pool was conducted by the three-dimensional finite element (FE) model to obtain the transient solidification conditions. The process of epitaxial nucleation and the competitive dendrite growth was simulated by a two-dimensional cellular automata (CA) model. The size and random preferential orientations of substrate grains were considered in this model. The transient thermal conditions used in the CA model were obtained from the results of FE model through the interpolation method. In addition, the effects of the substrate grain size and the welding speed on the morphologies of both dendrite and grain structures were investigated. The simulated results indicate that dendrites with the preferential orientations parallel to the direction of the highest temperature gradient are more competitive during the competitive dendrite growth, and the morphology of resulting columnar grains is determined by the competition between different dendritic arrays. Under the same welding conditions, with the increase of substrate grain size, the average width of resulting columnar grains becomes larger, and the characteristics of dendrite structure within the columnar grains do not change obviously. Without considering the new nucleation in the melt, with the increase of welding speed, the dendrite structure in weld seam becomes much finer, and the average columnar grain width within the calculation domain of the CA model does not change obviously. The trend of the simulated results of dendrite arm spacing under various welding conditions are consistent with the analytical and experimental data. (C) 2014 Elsevier B.V. All rights reserved.
description.department[han, rihong ; dong, wenchao ; lu, shanping ; li, dianzhong ; li, yiyi] chinese acad sci, inst met res, shenyang natl lab mat sci, shenyang 110016, peoples r china. ; lu, sp (reprint author), chinese acad sci, inst met res, shenyang natl lab mat sci, 72 wenhua rd, shenyang 110016, peoples r china. ; shplu@imr.ac.cn
KeywordEpitaxial Nucleation Competitive Dendrite Growth Cellular Automata (Ca) Dendrite Structure Columnar Grain Welding Pool Solidification Microstructure Growth-model Gta Welds Simulation Alloys Phase Flow Orientation Prediction Parameters
URL查看原文
Language英语
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/73236
Collection中国科学院金属研究所
Recommended Citation
GB/T 7714
R. H. Han,W. C. Dong,S. P. Lu,et al. Modeling of morphological evolution of columnar dendritic grains in the molten pool of gas tungsten arc welding[J]. Computational Materials Science,2014,95:351-361.
APA R. H. Han,W. C. Dong,S. P. Lu,D. Z. Li,&Y. Y. Li.(2014).Modeling of morphological evolution of columnar dendritic grains in the molten pool of gas tungsten arc welding.Computational Materials Science,95,351-361.
MLA R. H. Han,et al."Modeling of morphological evolution of columnar dendritic grains in the molten pool of gas tungsten arc welding".Computational Materials Science 95(2014):351-361.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[R. H. Han]'s Articles
[W. C. Dong]'s Articles
[S. P. Lu]'s Articles
Baidu academic
Similar articles in Baidu academic
[R. H. Han]'s Articles
[W. C. Dong]'s Articles
[S. P. Lu]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[R. H. Han]'s Articles
[W. C. Dong]'s Articles
[S. P. Lu]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.