IMR OpenIR
Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker
Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin; Jiang, X (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Wenhua Rd 72, Shenyang 110016, Peoples R China.; Jiang, X (reprint author), Univ Siegen, Inst Mat Engn, Paul Bonatz Str 9-11, D-57076 Siegen, Germany.
2016-06-14
Source PublicationLANGMUIR
ISSN0743-7463
Volume32Issue:23Pages:5731-5737
AbstractAs a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order-to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary, ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully;covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24,h. In contrast to this, TFAAD shows strong cross polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability.
description.department[wang, chun ; huang, nan ; zhai, zhaofeng ; liu, baodan ; jiang, xin] chinese acad sci, inst met res, shenyang natl lab mat sci, wenhua rd 72, shenyang 110016, peoples r china ; [zhuang, hao ; heuser, steffen ; schlemper, christoph ; staedler, thorsten ; jiang, xin] univ siegen, inst mat engn, paul bonatz str 9-11, d-57076 siegen, germany
Subject AreaChemistry ; Materials Science
Funding OrganizationNational Natural Science Foundation of China [51202257]; Chinese Scholarship Council [201400260067]; DAAD [57054770]
Indexed Bysci
Language英语
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/75830
Collection中国科学院金属研究所
Corresponding AuthorJiang, X (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Wenhua Rd 72, Shenyang 110016, Peoples R China.; Jiang, X (reprint author), Univ Siegen, Inst Mat Engn, Paul Bonatz Str 9-11, D-57076 Siegen, Germany.
Recommended Citation
GB/T 7714
Wang, Chun,Zhuang, Hao,Huang, Nan,et al. Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker[J]. LANGMUIR,2016,32(23):5731-5737.
APA Wang, Chun.,Zhuang, Hao.,Huang, Nan.,Heuser, Steffen.,Schlemper, Christoph.,...&Jiang, X .(2016).Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker.LANGMUIR,32(23),5731-5737.
MLA Wang, Chun,et al."Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker".LANGMUIR 32.23(2016):5731-5737.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Wang, Chun]'s Articles
[Zhuang, Hao]'s Articles
[Huang, Nan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wang, Chun]'s Articles
[Zhuang, Hao]'s Articles
[Huang, Nan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wang, Chun]'s Articles
[Zhuang, Hao]'s Articles
[Huang, Nan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.