Advanced   Register
IMR OpenIR  > 中国科学院金属研究所  > 期刊论文

题名: Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities
作者: Dong, Yanfeng;  Wu, Zhong-Shuai;  Zheng, Shuanghao;  Wang, Xiaohui;  Qin, Jieqiong;  Wang, Sen;  Shi, Xiaoyu;  Bao, Xinhe
发表日期: 2017-5-1
摘要: Sodium and potassium ion batteries hold promise for next-generation energy storage systems due to their rich abundance and low cost, but are facing great challenges in optimum electrode materials for actual applications. Here, ultrathin nanoribbons of sodium titanate (M-NTO, NaTi1.5O8.3) and potassium titanate (M-KTO, K2Ti4O9) were successfully synthesized by a simultaneous oxidation and alkalization process of Ti3C2 MXene. Benefiting from the suitable interlayer spacing (0.90 nm for M-NTO, 0.93 nm for M-KTO), ultrathin thickness (<11 nm), narrow widths of nanoribbons (<60 nm), and open macroporous structures for enhanced ion insertion/extraction kinetics, the resulting M-NTO exhibited a large reversible capacity of 191 mAh g(-1) at 200 mA g(-1) for sodium storage, higher than those of pristine Ti3C2 (178 mAh g(-1)) and commercial TiC derivatives (86 mAh g(-1)). Notably, M-KTO displayed a superior reversible capacity of 151 mAh g(-1) at 50 mA g(-1) and 88 mAh g(-1) at a high rate of 300 mA g(-1) and long-term stable cyclability over 900 times, which outperforms other Ti-based layered materials reported to date. Moreover, this strategy is facile and highly flexible and can be extended for preparing a large number of MXene-derived materials, from the 60+ group of MAX phases, for various applications such as supercapacitors, batteries, and electrocatalysts.
Appears in Collections:中国科学院金属研究所_期刊论文

Files in This Item:

There are no files associated with this item.

Recommended Citation:
Dong, Yanfeng,Wu, Zhong-Shuai,Zheng, Shuanghao,et al. Ti3c2 Mxene-derived Sodium/potassium Titanate Nanoribbons For High-performance Sodium/potassium Ion Batteries With Enhanced Capacities[J]. Acs Nano,2017,11(5):4792-4800.

SCI Citaion Data:
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Dong, Yanfeng]'s Articles
 [Wu, Zhong-Shuai]'s Articles
 [Zheng, Shuanghao]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Dong, Yanfeng]‘s Articles
 [Wu, Zhong-Shuai]‘s Articles
 [Zheng, Shuanghao]‘s Articles
Scirus search
 Similar articles in Scirus
Related Copyright Policies
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to  Add to Digg  Add to Reddit 
所有评论 (0)
内 容:
Email:  *
验证码:   刷新
标 题:
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.



Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院金属研究所  -Feedback
Powered by CSpace