Advanced   Register
IMR OpenIR  > 中国科学院金属研究所  > 期刊论文

题名: Lifetime prediction for organic coating under alternating hydrostatic pressure by artificial neural network
作者: Tian, Wenliang;  Meng, Fandi;  Liu, Li;  Li, Ying;  Wang, Fuhui
发表日期: 2017-1-17
摘要: A concept for prediction of organic coatings, based on the alternating hydrostatic pressure (AHP) accelerated tests, has been presented. An AHP accelerated test with different pressure values has been employed to evaluate coating degradation. And a back-propagation artificial neural network (BP-ANN) has been established to predict the service property and the service lifetime of coatings. The pressure value (P), immersion time (t) and service property (impedance modulus vertical bar Z vertical bar) are utilized as the parameters of the network. The average accuracies of the predicted service property and immersion time by the established network are 98.6% and 84.8%, respectively. The combination of accelerated test and prediction method by BP-ANN is promising to evaluate and predict coating property used in deep sea.
刊名: SCIENTIFIC REPORTS
Appears in Collections:中国科学院金属研究所_期刊论文

Files in This Item:

There are no files associated with this item.




Recommended Citation:
Tian, Wenliang,Meng, Fandi,Liu, Li,et al. Lifetime Prediction For Organic Coating Under Alternating Hydrostatic Pressure By Artificial Neural Network[J]. Scientific Reports,2017,7:-.

SCI Citaion Data:
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Tian, Wenliang]'s Articles
 [Meng, Fandi]'s Articles
 [Liu, Li]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Tian, Wenliang]‘s Articles
 [Meng, Fandi]‘s Articles
 [Liu, Li]‘s Articles
Scirus search
 Similar articles in Scirus
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院金属研究所  -Feedback
Powered by CSpace