IMR OpenIR
Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates
Jia, Hong-Min; Feng, Xiao-Hui; Yang, Yuan-Sheng; Yang, YS (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China.; Yang, YS (reprint author), Shandong Key Lab High Strength Lightweight Metall, Jinan 250014, Shandong, Peoples R China.
2017-12-01
Source PublicationCHINESE ACAD SCIENCES, INST METAL RESEARCH
ISSN1006-7191
Volume30Issue:12Pages:1185-1191
AbstractThe microstructure evolution and growth orientation of directionally solidified Mg-4 wt% Zn alloy in the growth rate range from 20 to 200 mu m/s were investigated. A typical cellular structure was observed with a growth rate of 20 mu m/s, and the cellular spacing was 115 mu m. When the growth rate increased to 60 mu m/s, cellular structure with some developed perturbations was obtained and the cellular spacing was 145 mu m, suggesting that the cell-to-dendrite transition happened at the growth rate lower than 60 mu m/s. As the growth rate further increased, the microstructure was dendritic and the primary dendritic arm spacing decreased. The relationship between the primary dendritic arm spacings and the growth rates was in good agreement with Trivedi model during dendritic growth. Besides, X-ray diffraction and transmission electron microscopy analyses showed that the growth direction of directionally solidified Mg-4 wt% Zn alloy was < 11 (2) over bar0 > ilay in{0002} crystal plane, and the preferred orientation was explained with the lattice vibration model for one-dimensional monatomic chain.; The microstructure evolution and growth orientation of directionally solidified Mg-4 wt% Zn alloy in the growth rate range from 20 to 200 mu m/s were investigated. A typical cellular structure was observed with a growth rate of 20 mu m/s, and the cellular spacing was 115 mu m. When the growth rate increased to 60 mu m/s, cellular structure with some developed perturbations was obtained and the cellular spacing was 145 mu m, suggesting that the cell-to-dendrite transition happened at the growth rate lower than 60 mu m/s. As the growth rate further increased, the microstructure was dendritic and the primary dendritic arm spacing decreased. The relationship between the primary dendritic arm spacings and the growth rates was in good agreement with Trivedi model during dendritic growth. Besides, X-ray diffraction and transmission electron microscopy analyses showed that the growth direction of directionally solidified Mg-4 wt% Zn alloy was < 11 (2) over bar0 > ilay in{0002} crystal plane, and the preferred orientation was explained with the lattice vibration model for one-dimensional monatomic chain.
description.department[jia, hong-min ; feng, xiao-hui ; yang, yuan-sheng] chinese acad sci, inst met res, shenyang 110016, liaoning, peoples r china ; [jia, hong-min] univ chinese acad sci, beijing 100039, peoples r china ; [yang, yuan-sheng] shandong key lab high strength lightweight metall, jinan 250014, shandong, peoples r china
KeywordDirectional Solidification Mg-zn Alloy Microstructure Evolution Primary Dendritic Arm Spacing Growth Orientation
Subject AreaMetallurgy & Metallurgical Engineering
Indexed BySCI
Language英语
WOS IDWOS:000414266400006
Citation statistics
Cited Times:9[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/78959
Collection中国科学院金属研究所
Corresponding AuthorYang, YS (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China.; Yang, YS (reprint author), Shandong Key Lab High Strength Lightweight Metall, Jinan 250014, Shandong, Peoples R China.
Recommended Citation
GB/T 7714
Jia, Hong-Min,Feng, Xiao-Hui,Yang, Yuan-Sheng,et al. Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates[J]. CHINESE ACAD SCIENCES, INST METAL RESEARCH,2017,30(12):1185-1191.
APA Jia, Hong-Min,Feng, Xiao-Hui,Yang, Yuan-Sheng,Yang, YS ,&Yang, YS .(2017).Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates.CHINESE ACAD SCIENCES, INST METAL RESEARCH,30(12),1185-1191.
MLA Jia, Hong-Min,et al."Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates".CHINESE ACAD SCIENCES, INST METAL RESEARCH 30.12(2017):1185-1191.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Jia, Hong-Min]'s Articles
[Feng, Xiao-Hui]'s Articles
[Yang, Yuan-Sheng]'s Articles
Baidu academic
Similar articles in Baidu academic
[Jia, Hong-Min]'s Articles
[Feng, Xiao-Hui]'s Articles
[Yang, Yuan-Sheng]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Jia, Hong-Min]'s Articles
[Feng, Xiao-Hui]'s Articles
[Yang, Yuan-Sheng]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.