Study on oxygen deficiency in spinel LiNi0.5Mn1.5O4 and its Fe and Cr-doped compounds | |
Liu, Guoqiang; Zhang, Jingyi; Zhang, Xiaohui; Du, Yulong; Zhang, Kai; Li, Guocheng; Yu, Han; Li, Chuanwen; Li, Zaiyuan; Sun, Qiang; Wen, Lei; Liu, GQ (reprint author), Northeastern Univ, Sch Met & Mat, Shenyang 110819, Liaoning, Peoples R China.; Wen, L (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China. | |
2017-11-25 | |
发表期刊 | ELSEVIER SCIENCE SA
![]() |
ISSN | 0925-8388 |
卷号 | 725页码:580-586 |
摘要 | The oxygen deficiency is an important factor to affect the electrochemical properties of spinel LiNi0.5Mn1.5O4. In this study, we investigated how oxygen deficiency in spinel LiNi0.5Mn1.5O4 was affected by calcination temperature and oxygen partial pressure. The oxygen deficiency as a function of calcination temperatures has been modeled. Doping elements have influence on oxygen deficiency. The oxygen dissipation of Cr-doped compounds LiNi0.45Cr0.1Mn1.45O4 at high temperature is less than pristine LiNi0.5Mn1.5O4. Under the same calcination and cooling condition, there more oxygen deficiency remained in Fe and Cr-doped compounds than in pristine LiMn1.5Ni0.5O4. The coulomb efficiencies of LiNi0.45Cr0.1Mn1.45O4 in the first charge and discharge cycle reached a high value of 89.1%. (C) 2017 Elsevier B.V. All rights reserved.; The oxygen deficiency is an important factor to affect the electrochemical properties of spinel LiNi0.5Mn1.5O4. In this study, we investigated how oxygen deficiency in spinel LiNi0.5Mn1.5O4 was affected by calcination temperature and oxygen partial pressure. The oxygen deficiency as a function of calcination temperatures has been modeled. Doping elements have influence on oxygen deficiency. The oxygen dissipation of Cr-doped compounds LiNi0.45Cr0.1Mn1.45O4 at high temperature is less than pristine LiNi0.5Mn1.5O4. Under the same calcination and cooling condition, there more oxygen deficiency remained in Fe and Cr-doped compounds than in pristine LiMn1.5Ni0.5O4. The coulomb efficiencies of LiNi0.45Cr0.1Mn1.45O4 in the first charge and discharge cycle reached a high value of 89.1%. (C) 2017 Elsevier B.V. All rights reserved. |
部门归属 | [liu, guoqiang ; zhang, jingyi ; zhang, xiaohui ; du, yulong ; zhang, kai ; li, guocheng ; yu, han ; li, chuanwen ; li, zaiyuan ; sun, qiang] northeastern univ, sch met & mat, shenyang 110819, liaoning, peoples r china ; [wen, lei] chinese acad sci, inst met res, shenyang 110016, liaoning, peoples r china |
关键词 | Oxygen Deficiency Spinel Lini0.5mn1.5o4 Doping Elements Synthesis Electrochemical Properties |
学科领域 | Chemistry, Physical ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
资助者 | National Natural Science Foundation of China [51574081] |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000412332900067 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/78970 |
专题 | 中国科学院金属研究所 |
通讯作者 | Liu, GQ (reprint author), Northeastern Univ, Sch Met & Mat, Shenyang 110819, Liaoning, Peoples R China.; Wen, L (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China. |
推荐引用方式 GB/T 7714 | Liu, Guoqiang,Zhang, Jingyi,Zhang, Xiaohui,et al. Study on oxygen deficiency in spinel LiNi0.5Mn1.5O4 and its Fe and Cr-doped compounds[J]. ELSEVIER SCIENCE SA,2017,725:580-586. |
APA | Liu, Guoqiang.,Zhang, Jingyi.,Zhang, Xiaohui.,Du, Yulong.,Zhang, Kai.,...&Wen, L .(2017).Study on oxygen deficiency in spinel LiNi0.5Mn1.5O4 and its Fe and Cr-doped compounds.ELSEVIER SCIENCE SA,725,580-586. |
MLA | Liu, Guoqiang,et al."Study on oxygen deficiency in spinel LiNi0.5Mn1.5O4 and its Fe and Cr-doped compounds".ELSEVIER SCIENCE SA 725(2017):580-586. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论