Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale | |
Shen, G; Hu, BJ; Zheng, CW; Gu, JF; Li, DZ; Gu, JF (reprint author), Shanghai Jiao Tong Univ, Inst Mat Modificat & Modelling, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China.; Zheng, CW (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China. | |
2018-06-15 | |
发表期刊 | COMPUTATIONAL MATERIALS SCIENCE
![]() |
ISSN | 0927-0256 |
卷号 | 149页码:191-201 |
摘要 | Microstructure-based numerical modeling of ferrite recrystallization in a cold-rolled dual-phase (DP) steel during continuous annealing has been performed by considering the deformation heterogeneity with a coupled simulation method. The plastic deformation inside the two-phase structures is firstly simulated using the crystal plasticity finite element method (CPFEM) at the grain scale with the initial grain structures and crystallographic orientations inputted from EBSD maps based on a digital material representation algorithm. The predicted local stored deformation energy is then incorporated into the cellular automaton model as the driving force for subsequent ferrite recrystallization nucleation and growth. The simulations demonstrate inhomogeneous microstructural behaviors of ferrite recrystallization owing to the microstructural deformation heterogeneity inherited from the deformed multi-phase structures. Reliable predictions regarding the recrystallization kinetics, grain size distribution and microstructure morphology can be made compared with the experimental results. The influence of annealing temperatures and heating rates is also obtained by the simulation approach.; Microstructure-based numerical modeling of ferrite recrystallization in a cold-rolled dual-phase (DP) steel during continuous annealing has been performed by considering the deformation heterogeneity with a coupled simulation method. The plastic deformation inside the two-phase structures is firstly simulated using the crystal plasticity finite element method (CPFEM) at the grain scale with the initial grain structures and crystallographic orientations inputted from EBSD maps based on a digital material representation algorithm. The predicted local stored deformation energy is then incorporated into the cellular automaton model as the driving force for subsequent ferrite recrystallization nucleation and growth. The simulations demonstrate inhomogeneous microstructural behaviors of ferrite recrystallization owing to the microstructural deformation heterogeneity inherited from the deformed multi-phase structures. Reliable predictions regarding the recrystallization kinetics, grain size distribution and microstructure morphology can be made compared with the experimental results. The influence of annealing temperatures and heating rates is also obtained by the simulation approach. |
部门归属 | [shen, gang ; gu, jianfeng] shanghai jiao tong univ, inst mat modificat & modelling, sch mat sci & engn, shanghai 200240, peoples r china ; [hu, baojia ; zheng, chengwu ; li, dianzhong] chinese acad sci, inst met res, shenyang natl lab mat sci, shenyang 110016, liaoning, peoples r china ; [gu, jianfeng] shanghai jiao tong univ, mat genome initiat ctr, shanghai 200240, peoples r china ; [gu, jianfeng] shanghai jiao tong univ, shanghai key lab mat laser proc & modificat, shanghai 200240, peoples r china |
关键词 | Finite-element Model Crystal Plasticity Cellular-automaton Static Recrystallization Austenite Formation Cold Deformation Heating Rate Microstructure Decomposition Evolution |
学科领域 | Materials Science, Multidisciplinary |
资助者 | National Science Foundation of China [51371169, 51401214] |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000430447800023 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/79286 |
专题 | 中国科学院金属研究所 |
通讯作者 | Gu, JF (reprint author), Shanghai Jiao Tong Univ, Inst Mat Modificat & Modelling, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China.; Zheng, CW (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China. |
推荐引用方式 GB/T 7714 | Shen, G,Hu, BJ,Zheng, CW,et al. Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale[J]. COMPUTATIONAL MATERIALS SCIENCE,2018,149:191-201. |
APA | Shen, G.,Hu, BJ.,Zheng, CW.,Gu, JF.,Li, DZ.,...&Zheng, CW .(2018).Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale.COMPUTATIONAL MATERIALS SCIENCE,149,191-201. |
MLA | Shen, G,et al."Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale".COMPUTATIONAL MATERIALS SCIENCE 149(2018):191-201. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论