IMR OpenIR
Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties
Zhang, YJ; Zhu, Y; Wang, KJ; Li, D; Wang, DP; Ding, F; Meng, D; Wang, XL; Choi, C; Zhang, ZD; Zhang, YJ (reprint author), Shenyang Univ Chem Technol, Coll Chem Engn, St 11, Shenyang 110142, Liaoning, Peoples R China.; Li, D (reprint author), Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China.
2018-06-15
发表期刊JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
ISSN0304-8853
卷号456页码:71-77
摘要Cobalt carbides (Co2C and Co3C) nanocomposites exhibit interesting hard magnetic property, controlled synthesis of individual phase facilitates to clarify the magnetism of each, but it is difficult to obtain the single phase. We present a new approach to address this issue via a polyol refluxing process, using cobalt laurate as the precursor. The single phase Co2C magnetic nanochains self-assembled by nanoparticles are synthesized. The precursor is the key factor for controlling the growth kinetics of the Co2C nanochains. Cobalt, instead of cobalt carbides, is produced if cobalt chloride, acetate and acetylacetonate replace cobalt laurate as the precursor, respectively. The evolution of the growth process has been studied. In the formation of Co2C, first fcc-Co produces, then it transforms into Co2C by carbon diffusion process, and the produced carbon first exists in disordered state and then a small amount of them transforms into graphite. Saturation magnetization (Ms) of Co2C nanochains obtained at 300 degrees C for 20, 60, and 180 min are 27.1, 18.9, and 10.9 emu g(-1), respectively. The decrease of Ms caused by increasing carbon content, and the carbon content are much larger than the stoichiometric ratio value of Co2C (9.2 wt%). The Co2C nanochains have mesoporous pore of 3.8 nm and the specific surface area of 48.6 m(2) g(-1). (C) 2018 Elsevier B.V. All rights reserved.; Cobalt carbides (Co2C and Co3C) nanocomposites exhibit interesting hard magnetic property, controlled synthesis of individual phase facilitates to clarify the magnetism of each, but it is difficult to obtain the single phase. We present a new approach to address this issue via a polyol refluxing process, using cobalt laurate as the precursor. The single phase Co2C magnetic nanochains self-assembled by nanoparticles are synthesized. The precursor is the key factor for controlling the growth kinetics of the Co2C nanochains. Cobalt, instead of cobalt carbides, is produced if cobalt chloride, acetate and acetylacetonate replace cobalt laurate as the precursor, respectively. The evolution of the growth process has been studied. In the formation of Co2C, first fcc-Co produces, then it transforms into Co2C by carbon diffusion process, and the produced carbon first exists in disordered state and then a small amount of them transforms into graphite. Saturation magnetization (Ms) of Co2C nanochains obtained at 300 degrees C for 20, 60, and 180 min are 27.1, 18.9, and 10.9 emu g(-1), respectively. The decrease of Ms caused by increasing carbon content, and the carbon content are much larger than the stoichiometric ratio value of Co2C (9.2 wt%). The Co2C nanochains have mesoporous pore of 3.8 nm and the specific surface area of 48.6 m(2) g(-1). (C) 2018 Elsevier B.V. All rights reserved.
部门归属[zhang, yajing ; zhu, yuan ; wang, kangjun ; wang, dongping ; ding, fu ; meng, dan] shenyang univ chem technol, coll chem engn, st 11, shenyang 110142, liaoning, peoples r china ; [li, da ; zhang, zhidong] chinese acad sci, shenyang natl lab mat sci, inst met res, 72 wenhua rd, shenyang 110016, liaoning, peoples r china ; [wang, xiaolei] shenyang univ technol, sch sci, shenyang 110870, liaoning, peoples r china ; [choi, chuljin] korea inst mat sci, 797 changwondaero, chang won 51508, gyeongnam, south korea
关键词Carbide Nanoparticles Fe5c2 Nanoparticles Chemical-synthesis High Coercivity In-situ Carbon Phase Nanorods Nanowires Films
学科领域Materials Science, Multidisciplinary ; Physics, Condensed Matter
资助者National Nature Science Foundation of China [51301114, 51371175, 51601120, 61403263, 21201123, 21203125]; Natural Science Foundation of Liaoning Province [201602598, 2015020649]; Science Research Foundation of Education Department of Liaoning Province [LQ2017011, L2016003]; Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) - Ministry of Science; FP7 Information and Communication Technologies and Future Planning [2016M3D1A1027800]
收录类别SCI
语种英语
WOS记录号WOS:000427580800011
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/79287
专题中国科学院金属研究所
通讯作者Zhang, YJ (reprint author), Shenyang Univ Chem Technol, Coll Chem Engn, St 11, Shenyang 110142, Liaoning, Peoples R China.; Li, D (reprint author), Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Zhang, YJ,Zhu, Y,Wang, KJ,et al. Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties[J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2018,456:71-77.
APA Zhang, YJ.,Zhu, Y.,Wang, KJ.,Li, D.,Wang, DP.,...&Li, D .(2018).Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties.JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,456,71-77.
MLA Zhang, YJ,et al."Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties".JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 456(2018):71-77.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, YJ]的文章
[Zhu, Y]的文章
[Wang, KJ]的文章
百度学术
百度学术中相似的文章
[Zhang, YJ]的文章
[Zhu, Y]的文章
[Wang, KJ]的文章
必应学术
必应学术中相似的文章
[Zhang, YJ]的文章
[Zhu, Y]的文章
[Wang, KJ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。