Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets | |
Hong, XX; Kang, YY; Zhen, C; Kong, XD; Yin, LC; Irvine, JTS; Wang, LZ; Liu, G; Cheng, HM; Liu, G (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.; Liu, G (reprint author), Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China. | |
2018-06-01 | |
发表期刊 | SCIENCE CHINA-MATERIALS
![]() |
ISSN | 2095-8226 |
卷号 | 61期号:6页码:831-838 |
摘要 | Anatase TiO2 microspheres with exposed dominant {001} facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substitutional nitrogen by heating in an ammonia atmosphere at different temperatures from 440 to 560 degrees C to give surface N concentrations ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures and visible-light photoelectrochemical water oxidation activity of these materials were investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen doping temperature of 520 degrees C that gave a high absorbance over the whole visible light region but with no defect-related background absorption.; Anatase TiO2 microspheres with exposed dominant {001} facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substitutional nitrogen by heating in an ammonia atmosphere at different temperatures from 440 to 560 degrees C to give surface N concentrations ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures and visible-light photoelectrochemical water oxidation activity of these materials were investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen doping temperature of 520 degrees C that gave a high absorbance over the whole visible light region but with no defect-related background absorption. |
部门归属 | [hong, xingxing ; kang, yuyang ; zhen, chao ; kong, xiangdong ; yin, li-chang ; liu, gang ; cheng, hui-ming] chinese acad sci, inst met res, shenyang natl lab mat sci, shenyang 110016, liaoning, peoples r china ; [hong, xingxing ; kang, yuyang ; liu, gang] univ sci & technol china, sch mat sci & engn, shenyang 110016, liaoning, peoples r china ; [irvine, john t. s.] univ st andrews, sch chem, st andrews ky16 9st, fife, scotland ; [wang, lianzhou] univ queensland, nanomat ctr, sch chem engn, brisbane, qld 4072, australia ; [wang, lianzhou] univ queensland, aibn, brisbane, qld 4072, australia ; [cheng, hui-ming] tsinghua univ, tsinghua berkeley shenzhen inst, shenzhen 518055, peoples r china ; [cheng, hui-ming] king abdulaziz univ, ctr excellence environm studies, jeddah 21589, saudi arabia |
关键词 | Hydrogen-production Titanium-dioxide Energy-conversion Water Oxidation Photocatalyst Irradiation Efficiency |
学科领域 | Materials Science, Multidisciplinary |
资助者 | Major Basic Research Program, Ministry of Science and Technology of China [2014CB239401]; National Natural Science Fundation of China [51422210, 21633009, 51629201, 51521091]; Key Research Program of Frontier Sciences CAS [QYZDB-SSW-JSC039]; Newton Advanced Fellowship |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000432687500005 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/79292 |
专题 | 中国科学院金属研究所 |
通讯作者 | Liu, G (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.; Liu, G (reprint author), Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China. |
推荐引用方式 GB/T 7714 | Hong, XX,Kang, YY,Zhen, C,et al. Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets[J]. SCIENCE CHINA-MATERIALS,2018,61(6):831-838. |
APA | Hong, XX.,Kang, YY.,Zhen, C.,Kong, XD.,Yin, LC.,...&Liu, G .(2018).Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets.SCIENCE CHINA-MATERIALS,61(6),831-838. |
MLA | Hong, XX,et al."Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets".SCIENCE CHINA-MATERIALS 61.6(2018):831-838. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论