IMR OpenIR
In-situ synchrotron X-ray diffraction study of dual-step strain variation in laser shock peened metallic glasses
Wang, L; Zhao, YK; Nie, ZH; Wang, BP; Xue, YF; Zhang, HF; Fu, HM; Brown, DE; Ren, Y; Xue, YF (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
2018-05-01
Source PublicationSCRIPTA MATERIALIA
ISSN1359-6462
Volume149Pages:112-116
AbstractAtomic-structure evolution is significant in understanding the deformation mechanism of metallic glasses. Here, we firstly find a dual-step atomic strain variation in laser-shock-peened (LSPed) metallic glasses during compression tests by using in-situ synchrotron X-ray diffraction. Under low compressive load, LSP-deformed zone's atomic-structure shows low Young's Modulus (E); with load increase, atomic-structure are re-hardened, showing high E. An atomic deformation mechanism is proposed by using flow unit model, that LSP could induce interconnected flow units and homogenize the atomic-structure. These interconnected flow units are metastable and start to annihilate during compressive loading, causing the dual-step atomic strain variation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.; Atomic-structure evolution is significant in understanding the deformation mechanism of metallic glasses. Here, we firstly find a dual-step atomic strain variation in laser-shock-peened (LSPed) metallic glasses during compression tests by using in-situ synchrotron X-ray diffraction. Under low compressive load, LSP-deformed zone's atomic-structure shows low Young's Modulus (E); with load increase, atomic-structure are re-hardened, showing high E. An atomic deformation mechanism is proposed by using flow unit model, that LSP could induce interconnected flow units and homogenize the atomic-structure. These interconnected flow units are metastable and start to annihilate during compressive loading, causing the dual-step atomic strain variation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
description.department[wang, liang ; zhao, yakai ; wang, lu ; nie, zhihua ; xue, yunfei] beijing inst technol, sch mat sci & engn, beijing 100081, peoples r china ; [wang, lu ; xue, yunfei] natl key lab sci & technol mat shock & impact, beijing 100081, peoples r china ; [wang, benpeng] beijing inst technol, sch mech engn, beijing 100081, peoples r china ; [zhang, haifeng ; fu, huameng] chinese acad sci, inst met res, shenyang natl lab mat sci, shenyang 110016, liaoning, peoples r china ; [brown, dennis e.] northern illinois univ, dept phys, de kalb, il 60115 usa ; [ren, yang] argonne natl lab, xray sci div, argonne, il 60439 usa
KeywordMechanical-properties Free-volume Flow Units Deformation Compression Percolation Relaxation Plasticity Activation Evolution
Subject AreaNanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
Funding OrganizationNational Natural Science Foundation of China [51471035, 51701018]; U.S. Department of Energy [DE-AC02-06CH11357]
Indexed BySCI
Language英语
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/79342
Collection中国科学院金属研究所
Corresponding AuthorXue, YF (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
Recommended Citation
GB/T 7714
Wang, L,Zhao, YK,Nie, ZH,et al. In-situ synchrotron X-ray diffraction study of dual-step strain variation in laser shock peened metallic glasses[J]. SCRIPTA MATERIALIA,2018,149:112-116.
APA Wang, L.,Zhao, YK.,Nie, ZH.,Wang, BP.,Xue, YF.,...&Xue, YF .(2018).In-situ synchrotron X-ray diffraction study of dual-step strain variation in laser shock peened metallic glasses.SCRIPTA MATERIALIA,149,112-116.
MLA Wang, L,et al."In-situ synchrotron X-ray diffraction study of dual-step strain variation in laser shock peened metallic glasses".SCRIPTA MATERIALIA 149(2018):112-116.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Wang, L]'s Articles
[Zhao, YK]'s Articles
[Nie, ZH]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wang, L]'s Articles
[Zhao, YK]'s Articles
[Nie, ZH]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wang, L]'s Articles
[Zhao, YK]'s Articles
[Nie, ZH]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.