Highly stable graphene-oxide-based membranes with superior permeability | |
Thebo, KH; Qian, XT; Zhang, Q; Chen, L; Cheng, HM; Ren, WC; Ren, WC (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China. | |
2018-04-16 | |
发表期刊 | NATURE COMMUNICATIONS
![]() |
ISSN | 2041-1723 |
卷号 | 9页码:- |
摘要 | Increasing fresh water demand for drinking and agriculture is one of the grand challenges of our age. Graphene oxide (GO) membranes have shown a great potential for desalination and water purification. However, it is challenging to further improve the water permeability without sacrificing the separation efficiency, and the GO membranes are easily delaminated in aqueous solutions within few hours. Here, we report a class of reduced GO membranes with enlarged interlayer distance fabricated by using theanine amino acid and tannic acid as reducing agent and cross-linker. Such membranes show water permeance over 10,000 Lm(-2) h(-1) bar(-1), which is 10-1000 times higher than those of previously reported GO-based membranes and commercial membranes, and good separation efficiency, e.g., rhodamine B and methylene blue rejection of similar to 100%. Moreover, they show no damage or delamination in water, acid, and basic solutions even after months.; Increasing fresh water demand for drinking and agriculture is one of the grand challenges of our age. Graphene oxide (GO) membranes have shown a great potential for desalination and water purification. However, it is challenging to further improve the water permeability without sacrificing the separation efficiency, and the GO membranes are easily delaminated in aqueous solutions within few hours. Here, we report a class of reduced GO membranes with enlarged interlayer distance fabricated by using theanine amino acid and tannic acid as reducing agent and cross-linker. Such membranes show water permeance over 10,000 Lm(-2) h(-1) bar(-1), which is 10-1000 times higher than those of previously reported GO-based membranes and commercial membranes, and good separation efficiency, e.g., rhodamine B and methylene blue rejection of similar to 100%. Moreover, they show no damage or delamination in water, acid, and basic solutions even after months. |
部门归属 | [thebo, khalid hussain ; qian, xitang ; zhang, qing ; chen, long ; cheng, hui-ming ; ren, wencai] chinese acad sci, inst met res, shenyang natl lab mat sci, 72 wenhua rd, shenyang 110016, liaoning, peoples r china ; [thebo, khalid hussain ; chen, long] univ chinese acad sci, 19 a yuquan rd, beijing 100049, peoples r china ; [qian, xitang ; zhang, qing] univ sci & technol china, sch mat sci & engn, 72 wenhua rd, shenyang 110016, liaoning, peoples r china ; [cheng, hui-ming] tsinghua univ, tbsi, 1001 xueyuan rd, shenzhen 518055, peoples r china |
关键词 | Nanofiltration Membranes Water Reduction Separation Nanosheets Acids Ions |
学科领域 | Multidisciplinary Sciences |
资助者 | National Key R&D Program of China [2016YFA0200101]; National Natural Science Foundation of China [51325205, 51290273, 51521091]; Chinese Academy of Sciences [KGZD-EW-303-1, KGZD-EW-T06, 174321KYSB20160011, XDPB06]; CAS-TWAS President Fellowship |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000430057800002 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/79359 |
专题 | 中国科学院金属研究所 |
通讯作者 | Ren, WC (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China. |
推荐引用方式 GB/T 7714 | Thebo, KH,Qian, XT,Zhang, Q,et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. NATURE COMMUNICATIONS,2018,9:-. |
APA | Thebo, KH.,Qian, XT.,Zhang, Q.,Chen, L.,Cheng, HM.,...&Ren, WC .(2018).Highly stable graphene-oxide-based membranes with superior permeability.NATURE COMMUNICATIONS,9,-. |
MLA | Thebo, KH,et al."Highly stable graphene-oxide-based membranes with superior permeability".NATURE COMMUNICATIONS 9(2018):-. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论