IMR OpenIR
Toward an understanding of post-necking behavior in ultrafine-scale Cu/Ni laminated composites
Tan, HF; Zhang, B; Zhang, GP; Zhang, B (reprint author), Northeastern Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Anisotropy & Texture Mat, 3-11 Wenhua Rd, Shenyang 110819, Liaoning, Peoples R China.
2018-02-14
发表期刊MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
ISSN0921-5093
卷号716页码:72-77
摘要Cu/Ni laminated composites with the same total thickness of 128 gm, but different modulation wavelength lambda (the sum of monolayer thickness of constituent layers) of 32 gm and 3 pm, respectively were prepared using a dual-bath electrodeposition technique. The tensile testing results and the quantitative characterization of strain gradient in the post-necking region of the composites reveal that the lambda = 3 mu m composites have the higher tensile strength and the better strain hardening ability, as well as the stronger resistance to post-necking compared with the lambda = 32 mu m ones. A high density of layer interfaces in the ultrathin laminated composite may play a key role in delaying the development of unstable plastic deformation along the layer thickness direction through periodical strain gradient and a number of geometrically necessary dislocations near the interfaces. Thus, the fatal localized plastic deformation along the through thickness direction has to be spread over along the loading direction, leading to the large neck breadth in the ultrathin laminated composites.; Cu/Ni laminated composites with the same total thickness of 128 gm, but different modulation wavelength lambda (the sum of monolayer thickness of constituent layers) of 32 gm and 3 pm, respectively were prepared using a dual-bath electrodeposition technique. The tensile testing results and the quantitative characterization of strain gradient in the post-necking region of the composites reveal that the lambda = 3 mu m composites have the higher tensile strength and the better strain hardening ability, as well as the stronger resistance to post-necking compared with the lambda = 32 mu m ones. A high density of layer interfaces in the ultrathin laminated composite may play a key role in delaying the development of unstable plastic deformation along the layer thickness direction through periodical strain gradient and a number of geometrically necessary dislocations near the interfaces. Thus, the fatal localized plastic deformation along the through thickness direction has to be spread over along the loading direction, leading to the large neck breadth in the ultrathin laminated composites.
部门归属[tan, h. f. ; zhang, b.] northeastern univ, sch mat sci & engn, minist educ, key lab anisotropy & texture mat, 3-11 wenhua rd, shenyang 110819, liaoning, peoples r china ; [zhang, g. p.] chinese acad sci, inst met res, shenyang natl lab mat sci, 72 wenhua rd, shenyang 110016, liaoning, peoples r china
关键词Mechanical-properties Hardening Behavior Sheet Metals Tensile Test Multilayers Plasticity Deformation Fracture Work Identification
学科领域Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
资助者National Natural Science Foundation of China (NSFC) [51371047, 51671050]; NSFC [51371180]
收录类别SCI
语种英语
WOS记录号WOS:000426234800009
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/79502
专题中国科学院金属研究所
通讯作者Zhang, B (reprint author), Northeastern Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Anisotropy & Texture Mat, 3-11 Wenhua Rd, Shenyang 110819, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Tan, HF,Zhang, B,Zhang, GP,et al. Toward an understanding of post-necking behavior in ultrafine-scale Cu/Ni laminated composites[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2018,716:72-77.
APA Tan, HF,Zhang, B,Zhang, GP,&Zhang, B .(2018).Toward an understanding of post-necking behavior in ultrafine-scale Cu/Ni laminated composites.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,716,72-77.
MLA Tan, HF,et al."Toward an understanding of post-necking behavior in ultrafine-scale Cu/Ni laminated composites".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 716(2018):72-77.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tan, HF]的文章
[Zhang, B]的文章
[Zhang, GP]的文章
百度学术
百度学术中相似的文章
[Tan, HF]的文章
[Zhang, B]的文章
[Zhang, GP]的文章
必应学术
必应学术中相似的文章
[Tan, HF]的文章
[Zhang, B]的文章
[Zhang, GP]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。