IMR OpenIR
Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy
Wang, M; Pang, JC; Zhang, MX; Liu, HQ; Li, SX; Zhang, ZF; Zhang, ZF (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China.
2018-02-07
发表期刊MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
ISSN0921-5093
卷号715页码:62-72
摘要The thermo-mechanical fatigue (TMF) behaviors and corresponding damage mechanisms of Al-Si piston alloy were investigated in the temperature ranges of 120-350 degrees C and 120-425 degrees C in this study. For TMF cyclic stress response behavior, the rapid cyclic softening occurs in the initial stage and then the cyclic stress maintains stable at lower strain amplitudes; but the cyclic stress displays gradual decrease up to the final failure at higher strain amplitudes. For TMF damage behavior, the cracks mainly initiate from the broken primary silicon in the temperature of 120-350 degrees C range, and commonly nucleate from the boundary between primary Si and matrix in the temperature of 120-425 degrees C range. For both cases, creep may have obvious influence and result in the formation of many micro-voids, but the oxidation may only have a little effect. A new energy-based model for low-cycle fatigue (LCF) and TMF life prediction was proposed based on the hysteresis energy with strain rate modification, considering both fatigue and creep damages. The predicted results agree well with the experimental ones for the Al-Si piston alloy.; The thermo-mechanical fatigue (TMF) behaviors and corresponding damage mechanisms of Al-Si piston alloy were investigated in the temperature ranges of 120-350 degrees C and 120-425 degrees C in this study. For TMF cyclic stress response behavior, the rapid cyclic softening occurs in the initial stage and then the cyclic stress maintains stable at lower strain amplitudes; but the cyclic stress displays gradual decrease up to the final failure at higher strain amplitudes. For TMF damage behavior, the cracks mainly initiate from the broken primary silicon in the temperature of 120-350 degrees C range, and commonly nucleate from the boundary between primary Si and matrix in the temperature of 120-425 degrees C range. For both cases, creep may have obvious influence and result in the formation of many micro-voids, but the oxidation may only have a little effect. A new energy-based model for low-cycle fatigue (LCF) and TMF life prediction was proposed based on the hysteresis energy with strain rate modification, considering both fatigue and creep damages. The predicted results agree well with the experimental ones for the Al-Si piston alloy.
部门归属[wang, m. ; pang, j. c. ; zhang, m. x. ; liu, h. q. ; li, s. x. ; zhang, z. f.] chinese acad sci, inst met res, shenyang natl lab mat sci, 72 wenhua rd, shenyang 110016, liaoning, peoples r china ; [wang, m. ; liu, h. q. ; zhang, z. f.] univ sci & technol china, sch mat sci & engn, hefei 230026, anhui, peoples r china
关键词Low-cycle Fatigue Damage Mechanisms Aluminum-alloy Elevated-temperature Strain-rate Loadings Components Property Creep Cu
学科领域Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
资助者National Natural Science Foundation of China (NSFC) [51331007]
收录类别SCI
语种英语
WOS记录号WOS:000426231700008
引用统计
被引频次:71[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/79514
专题中国科学院金属研究所
通讯作者Pang, JC; Zhang, ZF (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Wang, M,Pang, JC,Zhang, MX,et al. Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2018,715:62-72.
APA Wang, M.,Pang, JC.,Zhang, MX.,Liu, HQ.,Li, SX.,...&Zhang, ZF .(2018).Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,715,62-72.
MLA Wang, M,et al."Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 715(2018):62-72.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, M]的文章
[Pang, JC]的文章
[Zhang, MX]的文章
百度学术
百度学术中相似的文章
[Wang, M]的文章
[Pang, JC]的文章
[Zhang, MX]的文章
必应学术
必应学术中相似的文章
[Wang, M]的文章
[Pang, JC]的文章
[Zhang, MX]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。