IMR OpenIR

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Effect of Nb/(Ti plus Al) ratio on the phase stability and tensile properties of GH984G alloy 期刊论文
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 卷号: 795, 页码: 10
作者:  Wang, Changshuai;  Chen, Jiamin;  Zeng, Fanwei;  Wu, Yunsheng;  Guo, Jianting;  Zhou, Lanzhang
收藏  |  浏览/下载:135/0  |  提交时间:2021/02/02
Ni-Fe based Alloy  Nb/(Ti plus Al) ratio  gamma ' phase  Carbides  Tensile properties  
Thermal Stability of a New Ni-Fe-Cr Base Alloy with Different Ti/Al Ratios 期刊论文
Journal of Materials Science & Technology, 2015, 卷号: 31, 期号: 2, 页码: 135-142
作者:  C. S.;  Wang Wang, T. T.;  Tan, M. L.;  Guo, Y. G.;  Guo, J. T.;  Zhou, L. Z.
收藏  |  浏览/下载:146/0  |  提交时间:2015/05/08
700 Degrees c A-usc  Ni-fe-cr Base Alloy  Thermal Stability  Eta Phase  Ti/al Ratio  Nickel-based Superalloy  Coal Power-plants  Mechanical-properties  Eta-phase  Microstructure  
Microstructure evolution and mechanical properties of GH984G alloy with different Ti/Al ratios during long-term thermal exposure 期刊论文
Materials & Design, 2014, 卷号: 62, 页码: 225-232
作者:  T. T. Wang;  C. S. Wang;  W. Sun;  X. Z. Qin;  J. T. Guo;  L. Z. Zhou
收藏  |  浏览/下载:147/0  |  提交时间:2015/01/14
Ti/al Ratio  Ni-fe Based Superalloy  Microstructure Evolution  Eta  Phase  Tensile Properties  Eta-phase  Boiler Materials  Superalloy  Stability  Strength  
Effect of Ti/Al Ratio on the Microstructure and Stress Rupture Property in a Ni-Base Single Crystal Superalloy 期刊论文
RARE METAL MATERIALS AND ENGINEERING, 2009, 卷号: 38, 期号: 4, 页码: 612-616
作者:  Liu Lirong;  Jin Tao;  Chen Haijun;  Sun Xiaofeng;  Guan Hengrong;  Hu Zhuangqi
收藏  |  浏览/下载:74/0  |  提交时间:2021/02/02
single crystal superalloy  microstructure  stress rupture property  Ti/Al ratio  
Effect of aging on fatigue-crack growth behavior of a high-temperature titanium alloy 期刊论文
Materials Transactions, 2004, 卷号: 45, 期号: 5, 页码: 1577-1585
作者:  J. R. Liu;  S. X. Li;  D. Li;  R. Yang
收藏  |  浏览/下载:80/0  |  提交时间:2012/04/14
Aging Effect  Fatigue Crack Growth Behavior  High-temperature Titanium  Alloy  High-cycle Fatigue  Microstructural Influences  Silicide Precipitation  Room-temperature  Stress Ratio  Ti-6al-4v  Fracture  Propagation  Tensile  Phase