IMR OpenIR

浏览/检索结果: 共37条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Research on the Optimization of TP2 Copper Tube Drawing Process Parameters Based on Particle Swarm Algorithm and Radial Basis Neural Network 期刊论文
APPLIED SCIENCES-BASEL, 2024, 卷号: 14, 期号: 23, 页码: 23
作者:  Yue, Fengli;  Sha, Zhuo;  Sun, Hongyun;  Chen, Dayong;  Liu, Jinsong
收藏  |  浏览/下载:2/0  |  提交时间:2025/04/27
copper tube drawing  ultrasonic detection  wall thickness unevenness  particle swarm optimization  neural network  
Comparative Study on Online Prediction of TP2 Rolled Copper Tube Wall Thickness Based on Different Proxy Models 期刊论文
MATERIALS, 2024, 卷号: 17, 期号: 23, 页码: 24
作者:  Yue, Fengli;  Sha, Zhuo;  Sun, Hongyun;  Liu, Huan;  Chen, Dayong;  Liu, Jinsong;  Chen, Chuanlai
收藏  |  浏览/下载:1/0  |  提交时间:2025/04/27
joint drawing  ultrasonic testing  numerical simulation  neural network  
Advanced bifunctional bionic neural network-like architecture constructed by multi-scale carbon nanotubes nanocomposites for enhanced microwave absorption 期刊论文
COMPOSITES PART B-ENGINEERING, 2024, 卷号: 284, 页码: 12
作者:  Li, Shuaizhen;  Xie, Tianwen;  Ma, Lin;  Li, Bo;  Liu, Daheng;  Huang, Nan;  Liu, Wei;  Li, Bing;  Gai, Zhigang;  Jiang, Xin;  Ma, Song;  Zhang, Zhidong
收藏  |  浏览/下载:5/0  |  提交时间:2025/04/27
Hierarchical bionic neural network  Ni3Fe nanocatalysts  Microwave absorption  Corrosion protection  
Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network 期刊论文
JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 页码: 15
作者:  Wu Jia-jun;  Huang Zheng;  Qiao Hong-chao;  Wei Bo-xin;  Zhao Yong-jie;  Li Jing-feng;  Zhao Ji-bin
收藏  |  浏览/下载:71/0  |  提交时间:2023/05/09
laser shock processing  residual stress  microhardness  artificial neural network  
Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network 期刊论文
JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 页码: 15
作者:  Wu Jia-jun;  Huang Zheng;  Qiao Hong-chao;  Wei Bo-xin;  Zhao Yong-jie;  Li Jing-feng;  Zhao Ji-bin
收藏  |  浏览/下载:54/0  |  提交时间:2023/05/09
laser shock processing  residual stress  microhardness  artificial neural network  
A Scalable Artificial Neuron Based on Ultrathin Two-Dimensional Titanium Oxide 期刊论文
ACS NANO, 2021, 卷号: 15, 期号: 9, 页码: 15123-15131
作者:  Wang, Jingyun;  Teng, Changjiu;  Zhang, Zhiyuan;  Chen, Wenjun;  Tan, Junyang;  Pan, Yikun;  Zhang, Rongjie;  Zhou, Heyuan;  Ding, Baofu;  Cheng, Hui-Ming;  Liu, Bilu
收藏  |  浏览/下载:142/0  |  提交时间:2021/11/22
2D materials  titanium oxide  Langmuir-Blodgett assembly  artificial neuron  leaky integrate-and-fire  spiking neural network  
Effect of alloying elements on the precipitation of delta phase in Ni-Nb-Cr-Mo alloys 期刊论文
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 卷号: 785, 页码: 1038-1046
作者:  Hou, Jieshan;  Yang, Fei;  Wu, Yuxi;  Zhou, Lanzhang
收藏  |  浏览/下载:110/0  |  提交时间:2021/02/02
Nb-beared superalloy  delta phase  Multi-element  Thermodynamic  Artificial neural network  
Effect of alloying elements on the precipitation of delta phase in Ni-Nb-Cr-Mo alloys 期刊论文
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 卷号: 785, 页码: 1038-1046
作者:  Hou, Jieshan;  Yang, Fei;  Wu, Yuxi;  Zhou, Lanzhang
收藏  |  浏览/下载:111/0  |  提交时间:2021/02/02
Nb-beared superalloy  delta phase  Multi-element  Thermodynamic  Artificial neural network  
Effect of alloying elements on the precipitation of delta phase in Ni-Nb-Cr-Mo alloys 期刊论文
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 卷号: 785, 页码: 1038-1046
作者:  Hou, Jieshan;  Yang, Fei;  Wu, Yuxi;  Zhou, Lanzhang
收藏  |  浏览/下载:139/0  |  提交时间:2021/02/02
Nb-beared superalloy  delta phase  Multi-element  Thermodynamic  Artificial neural network  
Modeling the corrosion behavior of Ni-Cr-Mo-V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network 期刊论文
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 卷号: 35, 期号: 1, 页码: 168-175
作者:  Hu, Qiangfei;  Liu, Yuchen;  Zhang, Tao;  Geng, Shujiang;  Wang, Fuhui
收藏  |  浏览/下载:115/0  |  提交时间:2021/02/02
Ni-Cr-Mo-V steel  Deep sea corrosion  Design of experiment  Artificial neural network