×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院金属研究所机构知识库
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
Authors
Document Type
Journal a... [13]
Date Issued
2022 [3]
2021 [5]
2020 [2]
2019 [1]
2012 [1]
2011 [1]
More...
Language
英语 [13]
Source Publication
CHINESE PH... [2]
COMPUTATIO... [2]
NANO RESEA... [2]
ACTA MATER... [1]
FRONTIERS ... [1]
JOURNAL OF... [1]
More...
Funding Project
JSPS KAKEN... [2]
JSPS KAKEN... [2]
National K... [2]
National K... [2]
National N... [2]
National N... [2]
More...
Indexed By
SCI [11]
CSCD [2]
Funding Organization
National N... [7]
National K... [3]
China Post... [2]
JSPS KAKEN... [2]
National K... [2]
National N... [2]
More...
×
Knowledge Map
IMR OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 13
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Accurate structural descriptor enabled screening for nitrogen and oxygen vacancy codoped TiO2 with a large bandgap narrowing
期刊论文
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 卷号: 122, 页码: 84-90
Authors:
Zhang, Kangyu
;
Yin, Lichang
;
Liu, Gang
;
Cheng, Hui-Ming
Favorite
  |  
View/Download:49/0
  |  
Submit date:2022/07/01
Structural descriptor
Bandgap narrowing
Doping
Machine learning
Density functional theory
TiO2
Screening for shape memory alloys with narrow thermal hysteresis using combined XGBoost and DFT calculation
期刊论文
COMPUTATIONAL MATERIALS SCIENCE, 2022, 卷号: 211, 页码: 7
Authors:
Tian, Xiaohua
;
Zhou, Liwen
;
Zhang, Kun
;
Zhao, Qiu
;
Li, Hongxing
;
Shi, Dingding
;
Ma, Tianyou
;
Wang, Cheng
;
Wen, Qinlong
;
Tan, Changlong
Favorite
  |  
View/Download:42/0
  |  
Submit date:2022/07/14
Thermal hysteresis
NiTi shape memory alloys
Machine learning
XGBoost
First-principles calculations
Accelerated Design of High gamma ' Solvus Temperature and Yield Strength Cobalt-Based Superalloy Based on Machine Learning and Phase Diagram
期刊论文
FRONTIERS IN MATERIALS, 2022, 卷号: 9, 页码: 9
Authors:
Wang, Cuiping
;
Chen, Xin
;
Chen, Yuechao
;
Yu, Jinxin
;
Cai, Wensu
;
Chen, Zhongfeng
;
Yu, Xiang
;
Li, Yingju
;
Yang, Yuansheng
;
Liu, Xingjun
Favorite
  |  
View/Download:46/0
  |  
Submit date:2022/07/14
machine learning
new cobalt-based superalloys
high strength
high gamma ' solvus temperature
high gamma ' phase stability
High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes
期刊论文
NANO RESEARCH, 2021, 页码: 6
Authors:
Ji, Zhong-Hai
;
Zhang, Lili
;
Tang, Dai-Ming
;
Chen, Chien-Ming
;
Nordling, Torbjorn E. M.
;
Zhang, Zheng-De
;
Ren, Cui-Lan
;
Da, Bo
;
Li, Xin
;
Guo, Shu-Yu
;
Liu, Chang
;
Cheng, Hui-Ming
Favorite
  |  
View/Download:72/0
  |  
Submit date:2021/10/15
single-wall carbon nanotube
high throughput
machine learning
optimization
chemical vapor deposition
High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes
期刊论文
NANO RESEARCH, 2021, 页码: 6
Authors:
Ji, Zhong-Hai
;
Zhang, Lili
;
Tang, Dai-Ming
;
Chen, Chien-Ming
;
Nordling, Torbjorn E. M.
;
Zhang, Zheng-De
;
Ren, Cui-Lan
;
Da, Bo
;
Li, Xin
;
Guo, Shu-Yu
;
Liu, Chang
;
Cheng, Hui-Ming
Favorite
  |  
View/Download:70/0
  |  
Submit date:2021/10/15
single-wall carbon nanotube
high throughput
machine learning
optimization
chemical vapor deposition
Pore-affected fatigue life scattering and prediction of additively manufactured Inconel 718: An investigation based on miniature specimen testing and machine learning approach
期刊论文
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 卷号: 802, 页码: 11
Authors:
Luo, Y. W.
;
Zhang, B.
;
Feng, X.
;
Song, Z. M.
;
Qi, X. B.
;
Li, C. P.
;
Chen, G. F.
;
Zhang, G. P.
Favorite
  |  
View/Download:80/0
  |  
Submit date:2021/03/15
Selective laser melting
Pore feature
Fatigue life
Statistical analysis
Machine learning
Integrating data mining and machine learning to discover high-strength ductile titanium alloys
期刊论文
ACTA MATERIALIA, 2021, 卷号: 202, 页码: 211-221
Authors:
Zou, Chengxiong
;
Li, Jinshan
;
Wang, William Yi
;
Zhang, Ying
;
Lin, Deye
;
Yuan, Ruihao
;
Wang, Xiaodan
;
Tang, Bin
;
Wang, Jun
;
Gao, Xingyu
;
Kou, Hongchao
;
Hui, Xidong
;
Zeng, Xiaoqin
;
Qian, Ma
;
Song, Haifeng
;
Liu, Zi-Kui
;
Xu, Dongsheng
Favorite
  |  
View/Download:96/0
  |  
Submit date:2021/03/15
High-throughput calculation
Machine learning
Electron work function
Similar atomic environment
Bonding charge density
Physically inspired atom-centered symmetry functions for the construction of high dimensional neural network potential energy surfaces
期刊论文
COMPUTATIONAL MATERIALS SCIENCE, 2021, 卷号: 186, 页码: 7
Authors:
Zhang, Kangyu
;
Yin, Lichang
;
Liu, Gang
Favorite
  |  
View/Download:117/0
  |  
Submit date:2021/03/15
Machine learning
Potential energy surface
Atom centered symmetry function
Solid electrolyte
Molecular dynamics simulation
Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning*
期刊论文
CHINESE PHYSICS B, 2020, 卷号: 29, 期号: 4, 页码: 9
Authors:
Zhu, Zhen
;
Dong, Baojuan
;
Guo, Huaihong
;
Yang, Teng
;
Zhang, Zhidong
Favorite
  |  
View/Download:71/0
  |  
Submit date:2021/02/02
two-dimensional semiconductors
machine learning
Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning*
期刊论文
CHINESE PHYSICS B, 2020, 卷号: 29, 期号: 4, 页码: 9
Authors:
Zhu, Zhen
;
Dong, Baojuan
;
Guo, Huaihong
;
Yang, Teng
;
Zhang, Zhidong
Favorite
  |  
View/Download:66/0
  |  
Submit date:2021/02/02
two-dimensional semiconductors
machine learning