Measurement of heat-transfer coefficient of refractory for BF | |
Tong, WH; Shen, FM; Shibata, H; Wang, WZ; Yang, YS; Waseda, Y; Takahashi, R; Yagi, J | |
Corresponding Author | Tong, WH() |
2002-09-01 | |
Source Publication | ACTA METALLURGICA SINICA
![]() |
ISSN | 0412-1961 |
Volume | 38Issue:9Pages:983-988 |
Abstract | The thermal diffusivity and specific heat capacity of refractory for BF were measured with laser pulse method and DSC, to obtain the heat conductivity. The focus is investigating the effect of temperature and its history on heat diffusion and specific heat capacity of various refractory and establishing their mathematical model with temperature change. Further, the relationship between heat-transfer coefficient and temperature was obtained based on the experimental results. The measured results show that: (1) After firstly heating to high temperature, the measured thermal diffusivities of refractory except Al2O3-C refractory are larger than those measured in firstly heating. And the relationship of the thermal diffusivity with temperature is unique. But the results of Al2O3C refractory are opposite to this and its thermal diffusivities decrease gradually with the continuity of heating and cooling process; (2) With temperature increasing, the special heat capacity increases rapidly and then slowly. And basically there is no effect of temperature history on measuring special heat capacity; (3) According to measuring results, the mathematic model of heat-transfer coefficient lambda(W/m.K) with temperature T(K) is established and passes experimental verification. The thermal conductivity of refractory for BF can be predicted effectively using the model. |
Keyword | refractory heat-transfer coefficient heat diffusion temperature history |
Indexed By | SCI |
Language | 英语 |
WOS Research Area | Metallurgy & Metallurgical Engineering |
WOS Subject | Metallurgy & Metallurgical Engineering |
WOS ID | WOS:000178667600017 |
Publisher | SCIENCE CHINA PRESS |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/114156 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Tong, WH |
Affiliation | 1.Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China 2.Chinese Acad Sci, Met Res Inst, Shenyang 110016, Peoples R China 3.Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan |
Recommended Citation GB/T 7714 | Tong, WH,Shen, FM,Shibata, H,et al. Measurement of heat-transfer coefficient of refractory for BF[J]. ACTA METALLURGICA SINICA,2002,38(9):983-988. |
APA | Tong, WH.,Shen, FM.,Shibata, H.,Wang, WZ.,Yang, YS.,...&Yagi, J.(2002).Measurement of heat-transfer coefficient of refractory for BF.ACTA METALLURGICA SINICA,38(9),983-988. |
MLA | Tong, WH,et al."Measurement of heat-transfer coefficient of refractory for BF".ACTA METALLURGICA SINICA 38.9(2002):983-988. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment