Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A | |
Luo, C; Luo, HB; Zheng, SX; Gui, CS; Yue, LD; Yu, CY; Sun, T; He, PL; Chen, J; Shen, JH; Luo, XM; Li, YX; Liu, H; Bai, DL; Shen, JK; Yang, YM; Li, FQ; Zuo, JP; Hilgenfeld, R; Pei, G; Chen, KX; Shen, X; Jiang, HL | |
通讯作者 | Shen, X() |
2004-08-27 | |
发表期刊 | BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
![]() |
ISSN | 0006-291X |
卷号 | 321期号:3页码:557-565 |
摘要 | Severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid protein (NP) of SARS-CoV (SARS-NP) functions in enveloping the entire genomic RNA and interacts with viron structural proteins, thus playing important roles in the process of virus particle assembly and release. Protein-protein interaction analysis using bioinformatics tools indicated that SARS_NP may bind to human cyclophilin A (hCypA), and surface plasmon resonance (SPR) technology revealed this binding with the equilibrium dissociation constant ranging from 6 to 160nM. The probable binding sites of these two proteins were detected by modeling the three-dimensional structure of the SARS-NP-hCypA complex, from which the important interaction residue pairs between the proteins were deduced. Mutagenesis experiments were carried out for validating the binding model, whose correctness was assessed by the observed effects on the binding affinities between the proteins. The reliability of the binding sites derived by the molecular modeling was confirmed by the fact that the computationally predicted values of the relative free energies of the binding for SARS_NP (or hCypA) mutants to the wild-type hCypA (or SARS-NP) are in good agreement with the data determined by SPR. Such presently observed SARS_NP-hCypA interaction model might provide a new hint for facilitating the understanding of another possible SARS-CoV infection pathway against human cell. (C) 2004 Elsevier Inc. All rights reserved. |
关键词 | severe acute respiratory syndrome SARS coronavirus nucleocapsid protein cyclophilin A surface plasmon resonance site-directed mutagenesis protein-protein interaction |
DOI | 10.1016/j.bbrc.2004.07.003 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Biochemistry & Molecular Biology ; Biophysics |
WOS类目 | Biochemistry & Molecular Biology ; Biophysics |
WOS记录号 | WOS:000223277600007 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/119984 |
专题 | 中国科学院金属研究所 |
通讯作者 | Shen, X |
作者单位 | 1.Chinese Acad Sci, Grad Sch Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Inst Mat Med,Drug Discovery & Design Ctr, Shanghai 201203, Peoples R China 2.Chinese Acad Sci, Grad Sch Chinese Acad Sci, Shanghai Inst Biol Sci, State Key Lab Drug Res,Shanghai Inst Mat Med, Shanghai 201203, Peoples R China 3.Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai 200031, Peoples R China 4.Nanjing Gen Hosp, Mol Biol Lab, Nanjing 210002, Peoples R China 5.Med Univ Lubeck, Inst Biochem, D-23538 Lubeck, Germany |
推荐引用方式 GB/T 7714 | Luo, C,Luo, HB,Zheng, SX,et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A[J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS,2004,321(3):557-565. |
APA | Luo, C.,Luo, HB.,Zheng, SX.,Gui, CS.,Yue, LD.,...&Jiang, HL.(2004).Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A.BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS,321(3),557-565. |
MLA | Luo, C,et al."Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A".BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 321.3(2004):557-565. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论