IMR OpenIR
Layered Multitask Tracker via Spatial-Temporal Laplacian Graph
Fan, Baojie1; Li, Xiaomao2; Cong, Yang3
通讯作者Fan, Baojie(jobfbj@gmail.com)
2017-12-01
发表期刊IEEE SIGNAL PROCESSING LETTERS
ISSN1070-9908
卷号24期号:12页码:1768-1772
摘要Most multitask trackers define the trace of each candidate as one task, and assume all tasks are equally related. Multitask learning is only evaluated on the current frame. In fact, these assumptions are limited, and ignore the multitask relationship in consecutive frames. In this letter, we propose a discriminative layered multitask tracker via spatial-temporal Laplacian graphs, which defines the layered tasks from a novel view, and naturally incorporates the global and local target information into reverse multitask tracking process. The spatial-temporal Laplacian graphs not only exploit the sequential consistent information of the target, but also make full use of the geometric structure corresponding to the tasks among the adjacent frames. Besides, l(0) norm constraint and labeling information are used to improve the tracking robustness. Encouraging experimental results on challenging sequences justify that the proposed method performs well both in accuracy and robustness against some related trackers.
关键词Object tracking reverse layered multitask learning spatial-temporal Laplacian graphs weighted similarity map
资助者China Postdoctoral Science Foundation ; Foundation of Nanjing University of Tele. and Com.
DOI10.1109/LSP.2017.2756998
收录类别SCI
语种英语
资助项目China Postdoctoral Science Foundation[2015M571785] ; China Postdoctoral Science Foundation[2016T90484] ; Foundation of Nanjing University of Tele. and Com.[NY215148] ; Foundation of Nanjing University of Tele. and Com.[NY217061]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000413334300003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/127020
专题中国科学院金属研究所
通讯作者Fan, Baojie
作者单位1.Nanjing Univ Posts & Telecommun, Automat Coll, Nanjing, Jiangsu, Peoples R China
2.Shanghai Univ, Shanghai, Peoples R China
3.Chinese Acad Sci, State Key Lab Robot, Shenyang, Peoples R China
推荐引用方式
GB/T 7714
Fan, Baojie,Li, Xiaomao,Cong, Yang. Layered Multitask Tracker via Spatial-Temporal Laplacian Graph[J]. IEEE SIGNAL PROCESSING LETTERS,2017,24(12):1768-1772.
APA Fan, Baojie,Li, Xiaomao,&Cong, Yang.(2017).Layered Multitask Tracker via Spatial-Temporal Laplacian Graph.IEEE SIGNAL PROCESSING LETTERS,24(12),1768-1772.
MLA Fan, Baojie,et al."Layered Multitask Tracker via Spatial-Temporal Laplacian Graph".IEEE SIGNAL PROCESSING LETTERS 24.12(2017):1768-1772.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan, Baojie]的文章
[Li, Xiaomao]的文章
[Cong, Yang]的文章
百度学术
百度学术中相似的文章
[Fan, Baojie]的文章
[Li, Xiaomao]的文章
[Cong, Yang]的文章
必应学术
必应学术中相似的文章
[Fan, Baojie]的文章
[Li, Xiaomao]的文章
[Cong, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。