IMR OpenIR
Evaluation of shadow features
Qu, Liangqiong1,2,3; Tian, Jiandong1; Fan, Huijie1; Li, Wentao1; Tang, Yandong1
通讯作者Tian, Jiandong(tianjd@sia.cn)
2018-02-01
发表期刊IET COMPUTER VISION
ISSN1751-9632
卷号12期号:1页码:95-103
摘要Shadow features such as colour ratio, texture, and chromaticity have proved to be quite effective in shadow detection. Many shadow detection methods have been proposed on the basis of different features. However, previous works for shadow detection mainly focus on designing an effective classifier for existing shadow features, but pay less attention on the analysis of shadow features themselves. The majority of studies simply report the final shadow detection results rather than make an evaluation on each feature. Readers often do not know which features are more effective or whether these shadow features are complementary. The following problems are still unsolved: the robustness of each feature, which feature plays the most important role in a detection method, and what is the best performance that current features can reach. The purpose of this study is to answer these questions, and the authors hope that this study can offer guidance for future shadow detection algorithms via the evaluation of frequently used shadow features. Several useful and interesting conclusions are obtained after conducting extensive comparison experiments on a large dataset.
关键词object detection image texture image colour analysis image classification shadow features colour ratio chromaticity shadow detection methods
资助者Natural Science Foundation of China ; Youth Innovation Promotion Association CAS
DOI10.1049/iet-cvi.2017.0159
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61473280] ; Natural Science Foundation of China[61333019] ; Natural Science Foundation of China[91648118] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000423200200011
出版者INST ENGINEERING TECHNOLOGY-IET
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/127222
专题中国科学院金属研究所
通讯作者Tian, Jiandong
作者单位1.Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang, Liaoning, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Qu, Liangqiong,Tian, Jiandong,Fan, Huijie,et al. Evaluation of shadow features[J]. IET COMPUTER VISION,2018,12(1):95-103.
APA Qu, Liangqiong,Tian, Jiandong,Fan, Huijie,Li, Wentao,&Tang, Yandong.(2018).Evaluation of shadow features.IET COMPUTER VISION,12(1),95-103.
MLA Qu, Liangqiong,et al."Evaluation of shadow features".IET COMPUTER VISION 12.1(2018):95-103.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qu, Liangqiong]的文章
[Tian, Jiandong]的文章
[Fan, Huijie]的文章
百度学术
百度学术中相似的文章
[Qu, Liangqiong]的文章
[Tian, Jiandong]的文章
[Fan, Huijie]的文章
必应学术
必应学术中相似的文章
[Qu, Liangqiong]的文章
[Tian, Jiandong]的文章
[Fan, Huijie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。