IMR OpenIR
Violence detection in surveillance video using low-level features
Zhou, Peipei1,2,3,4; Ding, Qinghai1,5; Luo, Haibo1,3,4; Hou, Xinglin1,2,3,4
通讯作者Zhou, Peipei(zhoupeipei@sia.cn)
2018-10-03
发表期刊PLOS ONE
ISSN1932-6203
卷号13期号:10页码:15
摘要It is very important to automatically detect violent behaviors in video surveillance scenarios, for instance, railway stations, gymnasiums and psychiatric centers. However, the previous detection methods usually extract descriptors around the spatiotemporal interesting points or extract statistic features in the motion regions, leading to limited abilities to effectively detect video-based violence activities. To address this issue, we propose a novel method to detect violence sequences. Firstly, the motion regions are segmented according to the distribution of optical flow fields. Secondly, in the motion regions, we propose to extract two kinds of low-level features to represent the appearance and dynamics for violent behaviors. The proposed low-level features are the Local Histogram of Oriented Gradient (LHOG) descriptor extracted from RGB images and the Local Histogram of Optical Flow (LHOF) descriptor extracted from optical flow images. Thirdly, the extracted features are coded using Bag of Words (BoW) model to eliminate redundant information and a specific-length vector is obtained for each video clip. At last, the video-level vectors are classified by Support Vector Machine (SVM). Experimental results on three challenging benchmark datasets demonstrate that the proposed detection approach is superior to the previous methods.
DOI10.1371/journal.pone.0203668
收录类别SCI
语种英语
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000446342400026
出版者PUBLIC LIBRARY SCIENCE
引用统计
被引频次:55[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/129856
专题中国科学院金属研究所
通讯作者Zhou, Peipei
作者单位1.Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Liaoning, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Key Lab Optoelect Informat Proc, Shenyang, Liaoning, Peoples R China
4.Key Lab Image Understanding & Comp Vis, Shenyang, Liaoning, Peoples R China
5.Space Star Technol Co Ltd, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Peipei,Ding, Qinghai,Luo, Haibo,et al. Violence detection in surveillance video using low-level features[J]. PLOS ONE,2018,13(10):15.
APA Zhou, Peipei,Ding, Qinghai,Luo, Haibo,&Hou, Xinglin.(2018).Violence detection in surveillance video using low-level features.PLOS ONE,13(10),15.
MLA Zhou, Peipei,et al."Violence detection in surveillance video using low-level features".PLOS ONE 13.10(2018):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Peipei]的文章
[Ding, Qinghai]的文章
[Luo, Haibo]的文章
百度学术
百度学术中相似的文章
[Zhou, Peipei]的文章
[Ding, Qinghai]的文章
[Luo, Haibo]的文章
必应学术
必应学术中相似的文章
[Zhou, Peipei]的文章
[Ding, Qinghai]的文章
[Luo, Haibo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。