Ti-Gradient Doping to Stabilize Layered Surface Structure for High Performance High-Ni Oxide Cathode of Li-Ion Battery | |
Kong, Defei1; Hu, Jiangtao1; Chen, Zhefeng1; Song, Kepeng2; Li, Cheng3; Weng, Mouyi1; Li, Maofan1; Wang, Rui1; Liu, Tongchao1; Liu, Jiajie1; Zhang, Mingjian1,4; Xiao, Yinguo1; Pan, Feng1 | |
通讯作者 | Zhang, Mingjian(zhangmj@pkusz.edu.cn) ; Xiao, Yinguo(y.xiao@pku.edu.cn) ; Pan, Feng(panfeng@pkusz.edu.cn) |
2019-09-23 | |
发表期刊 | ADVANCED ENERGY MATERIALS
![]() |
ISSN | 1614-6832 |
页码 | 9 |
摘要 | High-Ni layered oxide cathodes are considered to be one of the most promising cathodes for high-energy-density lithium-ion batteries due to their high capacity and low cost. However, surfice residues, such as NiO-type rock-salt phase and Li2CO3, are often formed at the particle surface due to the high reactivity of Ni3+, and inevitably result in an inferior electrochemical performance, hindering the practical application. Herein, unprecedentedly clean surfaces without any surfice residues are obtained in a representative LiNi0.8Co0.2O2 cathode by Ti-gradient doping. High-resolution transmission electron microscopy (TEM) reveals that the particle surface is composed of a disordered layered phase (approximate to 6 nm in thickness) with the same rhombohedra structure as its interior. The formation of this disordered layered phase at the particle surface is electrochemically favored. It leads to the highest rate capacity ever reported and a superior cycling stability. First-principles calculations further confirm that the excellent electrochemical performance has roots in the excellent chemical/structural stability of such a disordered layered structure, mainly arising from the improved robustness of the oxygen framework by Ti doping. This strategy of constructing the disordered layered phase at the particle surface could be extended to other high-Ni layered transition metal oxides, which will contribute to the enhancement of their electrochemical performance. |
关键词 | disordered layered phase high-Ni layered oxide Li-ion batteries stable surface Ti-gradient doping |
资助者 | Guangdong Key-lab Project ; Shenzhen Science and Technology Research |
DOI | 10.1002/aenm.201901756 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Guangdong Key-lab Project[2017B0303010130] ; Shenzhen Science and Technology Research[ZDSYS201707281026184] |
WOS研究方向 | Chemistry ; Energy & Fuels ; Materials Science ; Physics |
WOS类目 | Chemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter |
WOS记录号 | WOS:000487514800001 |
出版者 | WILEY-V C H VERLAG GMBH |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/135546 |
专题 | 中国科学院金属研究所 |
通讯作者 | Zhang, Mingjian; Xiao, Yinguo; Pan, Feng |
作者单位 | 1.Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China 2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China 3.Forsch Zentrum Julich GmbH Outstn Spallat Neutron, Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA 4.Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA |
推荐引用方式 GB/T 7714 | Kong, Defei,Hu, Jiangtao,Chen, Zhefeng,et al. Ti-Gradient Doping to Stabilize Layered Surface Structure for High Performance High-Ni Oxide Cathode of Li-Ion Battery[J]. ADVANCED ENERGY MATERIALS,2019:9. |
APA | Kong, Defei.,Hu, Jiangtao.,Chen, Zhefeng.,Song, Kepeng.,Li, Cheng.,...&Pan, Feng.(2019).Ti-Gradient Doping to Stabilize Layered Surface Structure for High Performance High-Ni Oxide Cathode of Li-Ion Battery.ADVANCED ENERGY MATERIALS,9. |
MLA | Kong, Defei,et al."Ti-Gradient Doping to Stabilize Layered Surface Structure for High Performance High-Ni Oxide Cathode of Li-Ion Battery".ADVANCED ENERGY MATERIALS (2019):9. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论