IMR OpenIR
Ab initio study of the elastic properties of body-centered cubic Ti-Mo-based alloys
Yang, Yaochun1; Zhang, Hualei1; Sun, Qiaoyan1; Hu, Qing-Miao2; Ding, Xiangdong1; Wang, Yunzhi3; Vitos, Levente4,5,6
Corresponding AuthorZhang, Hualei(hualei@xjtu.edu.cn) ; Hu, Qing-Miao(qmhu@imr.ac.cn)
2020-02-01
Source PublicationCOMPUTATIONAL MATERIALS SCIENCE
ISSN0927-0256
Volume172Pages:9
AbstractUsing ab initio alloy theory, we systemically investigate the effect of alloying elements on the elastic properties of body-centered cubic (bcc) Ti1-x-yMoxMy (0.05 <= x <= 0.2; 0 <= y <= 0.4; M = Mg, Mn, Ni, Zr, Nb, and W) alloys. The theoretical single-crystal and polycrystalline elastic moduli of Ti1-xMox (0.05 <= x <= 0.2) agree well with the available experimental values and previous theoretical data. The lattice parameters of Ti-Mo-M ternary alloys significantly increase (decrease) with increasing Mg and Zr (Mn and Ni) contents, while remain almost constant for Nb and W additions. It is found that Mg is a promising alloying element that could decrease the Young's modulus of bcc Ti-Mo alloys, but its content should be as small as possible since the stability of the beta phase decreases with increasing Mg concentration. On the other hand, Mn, Ni, Nb, Zr, and W enhance the Young's modulus and the stability of the beta phase.
KeywordTi alloys Elastic properties Alloy design Single-crystal Young's modulus EMTO-CPA First-principles calculations
Funding OrganizationNational Natural Science Foundation of China ; National Basic Research Program of China ; National Key Research and Development Program of China ; Swedish Research Council (VR) ; Swedish Foundation for Strategic Research (SSF) ; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) ; Carl Tryggers Foundations ; Swedish Governmental Agency for Innovation Systems (VINNOVA) ; Hungarian Scientific Research Fund ; NSF
DOI10.1016/j.commatsci.2019.109320
Indexed BySCI
Language英语
Funding ProjectNational Natural Science Foundation of China[51871175] ; National Basic Research Program of China[2014CB644003] ; National Key Research and Development Program of China[2016YFB0701302] ; Swedish Research Council (VR) ; Swedish Foundation for Strategic Research (SSF) ; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) ; Carl Tryggers Foundations ; Swedish Governmental Agency for Innovation Systems (VINNOVA) ; Hungarian Scientific Research Fund[OTKA 128229] ; NSF[DMR-1534826]
WOS Research AreaMaterials Science
WOS SubjectMaterials Science, Multidisciplinary
WOS IDWOS:000500937400002
PublisherELSEVIER
Citation statistics
Cited Times:1[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/136036
Collection中国科学院金属研究所
Corresponding AuthorZhang, Hualei; Hu, Qing-Miao
Affiliation1.Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Frontier Inst Sci & Technol, Xian 710049, Shaanxi, Peoples R China
2.Chinese Acad Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
3.Ohio State Univ, Dept Mat Sci & Engn, 2041 Coll Rd, Columbus, OH 43210 USA
4.Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden
5.Uppsala Univ, Dept Phys & Mat Sci, Div Mat Theory, POB 516, SE-75120 Uppsala, Sweden
6.Wigner Res Ctr Phys, Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
Recommended Citation
GB/T 7714
Yang, Yaochun,Zhang, Hualei,Sun, Qiaoyan,et al. Ab initio study of the elastic properties of body-centered cubic Ti-Mo-based alloys[J]. COMPUTATIONAL MATERIALS SCIENCE,2020,172:9.
APA Yang, Yaochun.,Zhang, Hualei.,Sun, Qiaoyan.,Hu, Qing-Miao.,Ding, Xiangdong.,...&Vitos, Levente.(2020).Ab initio study of the elastic properties of body-centered cubic Ti-Mo-based alloys.COMPUTATIONAL MATERIALS SCIENCE,172,9.
MLA Yang, Yaochun,et al."Ab initio study of the elastic properties of body-centered cubic Ti-Mo-based alloys".COMPUTATIONAL MATERIALS SCIENCE 172(2020):9.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Yang, Yaochun]'s Articles
[Zhang, Hualei]'s Articles
[Sun, Qiaoyan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Yang, Yaochun]'s Articles
[Zhang, Hualei]'s Articles
[Sun, Qiaoyan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Yang, Yaochun]'s Articles
[Zhang, Hualei]'s Articles
[Sun, Qiaoyan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.