A vertical silicon-graphene-germanium transistor | |
Liu, Chi1; Ma, Wei1,2; Chen, Maolin1,2; Ren, Wencai1,2; Sun, Dongming1,2 | |
Corresponding Author | Sun, Dongming(dmsun@imr.ac.cn) |
2019-10-25 | |
Source Publication | NATURE COMMUNICATIONS
![]() |
ISSN | 2041-1723 |
Volume | 10Pages:7 |
Abstract | Graphene-base transistors have been proposed for high-frequency applications because of the negligible base transit time induced by the atomic thickness of graphene. However, generally used tunnel emitters suffer from high emitter potential-barrier-height which limits the transistor performance towards terahertz operation. To overcome this issue, a graphene-base heterojunction transistor has been proposed theoretically where the graphene base is sandwiched by silicon layers. Here we demonstrate a vertical silicon-graphene-germanium transistor where a Schottky emitter constructed by single-crystal silicon and single-layer graphene is achieved. Such Schottky emitter shows a current of 692 A cm(-2) and a capacitance of 41 nF cm(-2), and thus the alpha cut-off frequency of the transistor is expected to increase from about 1 MHz by using the previous tunnel emitters to above 1 GHz by using the current Schottky emitter. With further engineering, the semiconductor-graphene-semiconductor transistor is expected to be one of the most promising devices for ultra-high frequency operation. |
Funding Organization | National Natural Science Foundation of China ; Institute of Metal Research, Chinese Academy of Sciences ; Chinese Academy of Sciences ; Strategic Priority Research Program of Chinese Academy of Sciences ; Thousand Talent Program for Young Outstanding Scientists ; National Key Research and Development Program of China |
DOI | 10.1038/s41467-019-12814-1 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China[61704175] ; National Natural Science Foundation of China[51625203] ; National Natural Science Foundation of China[51532008] ; National Natural Science Foundation of China[51521091] ; National Natural Science Foundation of China[51272257] ; National Natural Science Foundation of China[51572264] ; National Natural Science Foundation of China[51502304] ; National Natural Science Foundation of China[61422406] ; National Natural Science Foundation of China[61574143] ; National Natural Science Foundation of China[51325205] ; National Natural Science Foundation of China[51290273] ; Institute of Metal Research, Chinese Academy of Sciences[2017-PY04] ; Chinese Academy of Sciences[KGZD-EW-T06] ; Chinese Academy of Sciences[ZDBS-LY-JSC027] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB30000000] ; Thousand Talent Program for Young Outstanding Scientists ; National Key Research and Development Program of China[2016YFB0401104] ; National Key Research and Development Program of China[2016YFA0200101] |
WOS Research Area | Science & Technology - Other Topics |
WOS Subject | Multidisciplinary Sciences |
WOS ID | WOS:000492835100011 |
Publisher | NATURE PUBLISHING GROUP |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/136813 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Sun, Dongming |
Affiliation | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China |
Recommended Citation GB/T 7714 | Liu, Chi,Ma, Wei,Chen, Maolin,et al. A vertical silicon-graphene-germanium transistor[J]. NATURE COMMUNICATIONS,2019,10:7. |
APA | Liu, Chi,Ma, Wei,Chen, Maolin,Ren, Wencai,&Sun, Dongming.(2019).A vertical silicon-graphene-germanium transistor.NATURE COMMUNICATIONS,10,7. |
MLA | Liu, Chi,et al."A vertical silicon-graphene-germanium transistor".NATURE COMMUNICATIONS 10(2019):7. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment